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Contributions

1. We present sab, a scalable method for solving one-sided zero-sum POSGs.
2. We establish a bound on the approximation error and prove convergence.
3. We show that sab outperforms the state-of-the-art on several games.
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Main Theoretical Results (Informal)

Proposition 1 (Convergence). sab converges for any one-sided zero-sum
POSG. (Contraction argument based on Banach fixed-point theorem.)

Proposition 2 (Approximation error bound). The difference between the
estimated value function Ṽ and the true value function V ⋆ is bounded as

|Ṽ (b) − V ⋆(b)| ≤ ϵ

1 − γ
, for all b ∈ B,

where γ is the discount factor and ϵ is a finite constant defined by
ϵ = max

x∈B
sup

b,b′∈Sx

|V ⋆(b) − V ⋆(b′)|, Sx = {b | b ∈ B, ϕbx = 1}.
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Comparison with Neural Fictitious Self-Play (NFSP)
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Numerical illustrations of Theoretical Results
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Figure: Numerical illustrations on a small game with two states. Plot a) shows the convergence of sab for varying discretization resolutions of the belief space; plot b) visually compares the
approximation obtained through sab with the value function; plot c) compares the approximation error with the theoretical bound; and plot d) shows the compute time.

Comparison with Heuristic Search Value Iteration (HSVI)
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Figure: Comparison between our method (sab) and the current state-of-the-art method (hsvi) on three example posgs from the game-theoretic literature. Rows relate to different games. Columns
relate to the parameter N , which controls the size of the game instantiation. The x-axes indicate computation time and the y-axes indicate the approximation error.


