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Contributions Theoretical Results (Informal)

1. We present MOBAL, an online method for incident response planning. Proposition 1 (Consistent conjectures). The model conjecture learned by
2. We establish bounds on misspecification and quantization errors. MOBAL is asymptotically consistent with respect to the information feedback.

3. We show that MOBAL obtains state-of-the-art performance on CAGE-2.

Proposition 2 (Misspecification error bound). The difference between
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Proposition 4 (Asymptotic (conjectured) optimality). The cost function

approximation J obtained through quantization converges to the conjectured
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optimal cost function J as r — oo, where r is the quantization resolution.
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Theorem 1 (Sub-optimality bound of MOBAL). The sub-optimality of

the cost function approximation J obtained through MOBAL is bounded as
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USER ZONE Method  Offline/Online compute time (min) Cost (| better)
= ™ No misspecification
1 i \E‘i:l\}‘ Q= MOBAL 0/850 15.19 4+ 0.82
& CARDIFF 300/0.01 13.69 + 0.53
= —/
= N _E:’s'_%_mggg”““""“ PPO 1000/0.01 119.02 + 58.11
= I E——— c-poMCP 0/0.50 13.32 +0.18
= ;4. ES. Eél poMcP  0/0.50 29.51 £+ 2.00
ENTERERISE ZONE OPERATIONAL ZONE Misspecification
MOBAL  0/8.50 35.91 +9.01
CARDIFF 300/0.01 94.28 + 33.27
Defender c-poMcCP 0/0.50 02.71 & 27.67
We formulate incident response planning as a POMDP and seek to find a PoMcP  0/0.50 I1.51 & 28.23
near-optimal response strategy 7 that maps belief states to response actions. (C-POMCP and CARDIFF are state-of-the-art methods.)
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Figure: MOBAL: an iterative method for online learning of incident response strategies under model misspecification. The figure illustrates a time step during which (/) the posterior distribution over

possible system models is updated via Bayesian learning based on feedback from the system; (/i) a conjectured model is sampled from the posterior and quantized into a computationally tractable
MDP; and (J/ii) a response strategy is computed using dynamic programming. Preprint: https://arxiv.org/pdf/2508.14385.
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