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Contributions

1. We present mobal, an online method for incident response planning.
2. We establish bounds on misspecification and quantization errors.
3. We show that mobal obtains state-of-the-art performance on cage-2.
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We formulate incident response planning as a POMDP and seek to find a
near-optimal response strategy π that maps belief states to response actions.

Theoretical Results (Informal)

Proposition 1 (Consistent conjectures). The model conjecture learned by
mobal is asymptotically consistent with respect to the information feedback.

Proposition 2 (Misspecification error bound). The difference between
the conjectured optimal cost function J⋆ and the true optimal cost function J⋆

is bounded as
∥J⋆ − J⋆∥∞ ≤ γαcmax

(1 − γ)2,

where γ is the discount factor, α quantifies the difference between the
transition probabilities in the conjectured model and the true model, and cmax is
the maximum stage cost.

Proposition 3 (Approximation error bound). The difference between the
cost function approximation J̃ obtained through quantization and the
conjectured optimal cost function J⋆ is bounded as

|J̃(b) − J⋆(b)| ≤ ϵ

1 − γ
,

where γ is the discount factor and ϵ is the maximum variation of J⋆ within each
belief space partition.

Proposition 4 (Asymptotic (conjectured) optimality). The cost function
approximation J̃ obtained through quantization converges to the conjectured
optimal cost function J⋆ as r → ∞, where r is the quantization resolution.

Theorem 1 (Sub-optimality bound of MOBAL). The sub-optimality of
the cost function approximation J̃ obtained through mobal is bounded as

∥J̃ − J⋆∥∞ ≤ ϵ

1 − γ
+ γαcmax

(1 − γ)2.

Evaluation Results on the CAGE-2 Benchmark

Method Offline/Online compute time (min) Cost (↓ better)
No misspecification

mobal 0/8.50 15.19 ± 0.82
cardiff 300/0.01 13.69 ± 0.53
ppo 1000/0.01 119.02 ± 58.11
c-pomcp 0/0.50 13.32 ± 0.18
pomcp 0/0.50 29.51 ± 2.00

Misspecification
mobal 0/8.50 35.91 ± 9.01
cardiff 300/0.01 94.28 ± 33.27
ppo 1000/0.01 124.38 ± 55.49
c-pomcp 0/0.50 92.71 ± 27.67
pomcp 0/0.50 91.51 ± 28.23

(c-pomcp and cardiff are state-of-the-art methods.)
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Figure: mobal: an iterative method for online learning of incident response strategies under model misspecification. The figure illustrates a time step during which (i) the posterior distribution over
possible system models is updated via Bayesian learning based on feedback from the system; (ii) a conjectured model is sampled from the posterior and quantized into a computationally tractable
mdp; and (iii) a response strategy is computed using dynamic programming. Preprint: https://arxiv.org/pdf/2508.14385.
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