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Abstract—We study automated intrusion response for an IT
infrastructure and formulate the interaction between an attacker
and a defender as a partially observed stochastic game. To
solve the game we follow an approach where attack and defense
strategies co-evolve through reinforcement learning and self-play
toward an equilibrium. Solutions proposed in previous work
prove the feasibility of this approach for small infrastructures
but do not scale to realistic scenarios due to the exponential
growth in computational complexity with the infrastructure
size. We address this problem by introducing a method that
recursively decomposes the game into subgames which can be
solved in parallel. Applying optimal stopping theory we show
that the best response strategies in these subgames exhibit
threshold structures, which allows us to compute them efficiently.
To solve the decomposed game we introduce an algorithm
called Decompositional Fictitious Self-Play (DFSP), which learns
Nash equilibria through stochastic approximation. We evaluate
the learned strategies in an emulation environment where real
intrusions and response actions can be executed. The results show
that the learned strategies approximate an equilibrium and that
DFSP significantly outperforms a state-of-the-art algorithm for a
realistic infrastructure configuration.

Index Terms—Cybersecurity, network security, intrusion re-
sponse, reinforcement learning, game theory, game decomposi-
tion, Markov decision process, optimal control, digital twin, MDP.

I. INTRODUCTION

A promising direction of recent research is to automatically
find security strategies for an IT infrastructure through rein-
forcement learning methods, whereby the problem is formu-
lated as a Markov decision problem and strategies are learned
through simulation (see survey [1]). While encouraging results
have been obtained following this approach (see e.g. [2] and
[3]), key challenges remain. For example, most of the prior
work follows a decision-theoretic formulation and aims at
learning effective defender strategies against a static attacker
with a fixed strategy [2]–[14]. Only recently has the problem of
learning effective security strategies against dynamic attackers
been studied. This approach includes a game-theoretic fram-
ing, and the problem becomes one of learning Nash equilibria
[15]–[24].

Chief among the remaining challenges is the complexity of
the formal model, resulting from the need to describe the target
infrastructure with sufficient detail and at a realistic scale.
Learning effective strategies with currently known methods
is infeasible for most realistic use cases.
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Fig. 1: The target infrastructure and the actors involved in the
intrusion response use case.

In this paper, we address the complexity challenge and
present a scalable approach to automatically learn near-optimal
defender strategies against dynamic attackers. We apply our
approach to an intrusion response use case that involves the
IT infrastructure of an organization (see Fig. 1). We formalize
the use case as a partially observed stochastic game between
two players – the operator of the infrastructure, which we call
the defender, and an attacker, which seeks to intrude on the
infrastructure. To manage the complexity when formalizing
the use case, we recursively decompose the game into simpler
subgames, which allows detailed modeling of the infrastruc-
ture while keeping computational complexity low.

The decomposition involves three steps. First, we partition
the infrastructure according to workflows that are isolated
from each other. This allows us to decompose the game
into independent subgames (one per workflow) that can be
solved in parallel. Second, we exploit the fact that workflows
usually have graph structure, which allows us to decompose
the workflow games into node subgames. We prove that
these subgames have optimal substructure [25, Ch. 15], which
means that a best response of the original game can be
obtained from best responses of the node subgames. Third, we
show that the problem of selecting which response action to
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Fig. 2: Our framework for finding and evaluating intrusion
response strategies [3], [6], [19].

apply on a node can be separated from that of deciding when
to apply the action, which enables efficient learning of best
responses through the application of optimal stopping theory
[26]. We use this result to design an efficient reinforcement
learning algorithm, called Decompositional Fictitious Self-
Play (DFSP), which allows scalable approximation of Nash
equilibrium strategies.

Our experimental method for learning the equilibrium
strategies and evaluating them is based on a digital twin of
the target infrastructure, which we use to run attack scenarios
and defender responses (see Fig. 2) [3], [6], [19]. Such
runs produce system measurements and logs, from which we
estimate infrastructure statistics. We then use these statistics
to instantiate simulations of the infrastructure’s dynamics and
learn strategies through DFSP.

We summarize the contributions in this paper as follows.
1) We formulate the intrusion response problem as a par-

tially observed stochastic game and prove that, under
assumptions often met in practice, the game decomposes
into subgames whose best responses can be computed
efficiently and in parallel.

2) We design DFSP, an efficient reinforcement learning
algorithm for approximating Nash equilibria of the de-
composed game.

3) For a realistic use case, we evaluate the learned response
strategies against real network intrusions on a digital twin.

II. RELATED WORK

Networked systems found in engineering and science often
exhibit a modular topological structure that can be exploited
for designing control algorithms [27]. System decomposition
for the purpose of automatic control was first suggested by
Šiljak in 1978 [28] and approaches based on decomposition,
such as divide and conquer, layering, and hierarchical structur-
ing are well established in the design of large-scale systems,
a notable example being the Internet [29]. Similar decompo-
sition methods are frequently used in robotics and multi-agent
systems, as exemplified by the subsumption architecture [30].
Within the fields of decision- and game-theory, decomposition
is studied in the context of factored decision processes [31]–
[34], distributed decision processes [35], factored games [36],
[37], and graphical games [38].

Decomposition as a means to automate intrusion responses
has been studied first in [36], [39]–[41]. The work in [36]
formulates the interaction between a defender and an attacker
on a cyber-physical infrastructure as a factored Markov game
and introduces a decomposition based on linear programming.
Following a similar approach, the work in [40] studies a
Markov game formulation and shows that a multi-stage game
can be decomposed into a sequence of one-stage games. In
a separate line of work, [39] models intrusion response as a
minimax control problem and develops a heuristic decompo-
sition based on clustering and influence graphs. This approach
resembles the work in [41], which studies a factored decision
process and proposes a hierarchical decomposition.

In all of the above works, decomposition is key to ob-
tain effective strategies for large-scale systems. Compared
to our work, some of them propose decomposition methods
without optimal substructure [39], others do not consider
partial observability [36], [40], or dynamic attackers [41].
Most importantly, all of the above works evaluate the obtained
strategies in a simulation environment. They do not perform
evaluation in an emulation environment as we report in this
paper, which gives higher confidence that the strategies are
effective on the target infrastructure.

For a comprehensive review of prior research on automated
intrusion response (beyond work that use decomposition), see
[19, §VII].

III. THE INTRUSION RESPONSE USE CASE

We consider an intrusion response use case that involves
the IT infrastructure of an organization. The operator of this
infrastructure, which we call the defender, takes measures to
protect it against an attacker while providing services to a
client population (see Fig. 1). The infrastructure is segmented
into zones with servers that run network services. Services are
realized by workflows that are accessed by clients through a
gateway, which also is open to the attacker.

The attacker’s goal is to intrude on the infrastructure,
compromise servers, and disrupt workflows. It can take three
types of actions to achieve this goal: (i) reconnaissance; (ii)
brute-force attacks; and (iii) exploits (see Fig. 3).

The defender continuously monitors the infrastructure
through accessing and analyzing intrusion detection alerts and
other statistics. It can take four types of defensive actions to
respond to possible intrusions: (i) migrate servers between
zones; (ii) redirect or block network flows; (iii) shut down
servers; and (iv) revoke access to servers (see Fig. 4). When
deciding on defensive actions, the defender balances two
objectives: a) maintain workflows to clients; and b) respond
to possible intrusions while minimizing costs.

IV. FORMALIZING THE INTRUSION RESPONSE PROBLEM

We formalize the above use case as an optimization problem
where the goal is to select an optimal sequence of defender
actions in response to a sequence of attacker actions. We
assume a dynamic attacker, which leads to a game model of
the intrusion response problem. The game is played on the IT
infrastructure, which we model as a discrete-time dynamical
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Fig. 3: Attacker actions: (i) reconnaissance actions; (ii) brute-
force attacks; and (iii) code execution attacks.

system whose evolution depends on the actions by the attacker
and the defender. Both actors have partial observability of
the system state and their observations depend on traffic
generated by clients requesting service, which we assume can
be described by a stationary process.

Notations. Boldface lower case letters (e.g. x) denote row
vectors and upper case calligraphic letters (e.g. V) represent
sets. The set of probability distributions over V is denoted
with ∆(V). A random variable is denoted with upper case
(e.g. X) and a random vector is denoted with boldface (e.g.
X = (X1, . . . , Xn)). P is the probability measure and the
expectation of f with respect to X is denoted with EX [f ].
When f includes many random variables that depend on π
we simplify the notation to Eπ[f ]. We use x ∼ f to denote
that x is sampled from f and write P[x|z, y] instead of P[X =
x|Z = z, Y = y] when X,Z, Y are clear from the context.

A. Modeling the Infrastructure and Services

Following the description in §III, we consider an IT infras-
tructure with application servers connected by a communica-
tion network that is segmented into zones (see Fig. 1). Overlaid
on this physical infrastructure is a virtual infrastructure that
includes nodes, which collectively offer services to clients.

A service is modeled as a workflow, which comprises a set
of interdependent nodes. A dependency between two nodes
reflects information exchange through service invocations. We
assume that each node belongs to exactly one workflow. As
an example of a virtual infrastructure, we can think of a
microservice architecture where a workflow is defined as a
chain of microservices (see Fig. 5).

Infrastructure. We model the virtual infrastructure as a (fi-
nite) directed graph G , 〈{gw} ∪ V, E〉. The graph has a tree
structure and is rooted at the gateway gw. Each node i ∈ V
has three state variables. v(R)

i,t represents the reconnaissance
state and realizes the binary random variable V (R)

i,t . V (R)
i,t = 1

if the attacker has discovered the node, 0 otherwise. v(I)
i,t

represents the intrusion state and realizes the binary random
variable V (I)

i,t . V (I)
i,t = 1 if the attacker has compromised the

node, 0 otherwise. Lastly, v(Z)
i,t indicates the zone in which the

node resides and realizes the random variable V (Z)
i,t . We call a

node active if it is functional as part of a workflow (denoted
αi,t = 1). Due to defender actions (e.g. shut downs) a node
i ∈ V may become inactive (i.e. αi,t = 0).
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Fig. 4: Defender actions: (i) migrate a server between two
zones; (ii) redirect or block traffic flows to a server; (iii) shut
down a server; and (iv) revoke access to a server.

Workflows. We model a workflow w ∈ W as a subtree Gw ,
〈{gw}∪Vw, Ew〉 of the infrastructure graph. Workflows do not
overlap except for the gateway which belongs to all workflows.

B. Modeling Actors

The intrusion response use case involves three types of
actors: an attacker, a defender, and clients (see Fig. 1).

Attacker. At each time t, the attacker takes an action a
(A)
t ,

which is defined as the composition of the local actions on
all nodes a

(A)
t , (a

(A)
1,t , . . . ,a

(A)
|V|,t) ∈ AA, where AA is finite.

A local action can be a null action (denoted with ⊥) or an
offensive action (see examples in Fig. 3). An offensive action
on a node i may change the reconnaissance state V (R)

i,t or the
intrusion state V (I)

i,t . A node i can only be compromised if it
is discovered, i.e. if V (R)

i,t = 1. We denote this constraint with
a

(A)
t ∈ AA(st).
The attacker state S

(A)
t ,

(
V

(I)
i,t , V

(R)
i,t

)
i∈V evolves as

s
(A)
t+1 ∼ fA

(
· | S(A)

t ,A
(A)
t ,A

(D)
t

)
(1)

where S
(A)
t , A(A)

t , and A
(D)
t are random vectors with realiza-

tions s
(A)
t , a(A)

t , and a
(D)
t .

Defender. At each time t, the defender takes an action a
(D)
t ,

which is defined as the composition of the local actions on all
nodes a

(D)
t , (a

(D)
1,t , . . . ,a

(D)
|V|,t) ∈ AD, where AD is finite. A

local action can be a defensive action or the null action ⊥ (see
examples in Fig. 4). Each defensive action a

(D)
i,t 6= ⊥ leads to

S
(A)
i,t+1 = (0, 0) and may affect V (Z)

i,t+1.
The defender state S

(D)
t ,

(
V

(Z)
i,t

)
i∈V evolves according to

s
(D)
t+1 ∼ fD

(
· | S(D)

t ,A
(D)
t

)
(2)

where s
(D)
t+1 is a realization of S(D)

t+1.
Clients. Clients consume services of the infrastructure by
accessing workflows. We model client behavior through sta-
tionary stochastic processes, which affect the observations
available to the attacker and the defender.

C. Observability and Strategies

At each time t, the defender and the attacker both observe
ot ,

(
o1,t, . . . ,o|V|,t

)
∈ O, where O is finite. (In our use
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Fig. 5: Dependency graph of a workflow consisting of a chain
of virtual network functions and microservices; FW, LB, and
IDPS are acronyms for firewall, load balancer, and intrusion
detection and prevention system, respectively.

case ot relates to the number of IDPS alerts per node.) ot is
drawn from the random vector Ot , (O1,t, . . . ,O|V|,t) whose
marginal distributions ZO1 , . . . , ZO|V| are conditionally inde-
pendent given Si,t+1 , (S

(D)
i,t+1,S

(A)
i,t+1). As a consequence,

the joint conditional distribution Z is given by

Z
(
Ot+1 = o | St+1

)
=

|V|∏
i=1

ZOi

(
Oi,t+1 = oi | Si,t+1

)
(3)

where o ∈ O.
The sequence of observations and states at times 1, . . . , t

forms the histories h
(D)
t ∈ HD and h

(A)
t ∈ HA. These

histories are realizations of the random vectors H(D)
t , (S

(D)
1 ,

A
(D)
1 ,O1, . . . ,A

(D)
t−1,S

(D)
t ,Ot) and H

(A)
t , (S

(A)
1 ,A

(A)
1 ,O1,

. . . ,A
(A)
t−1,S

(A)
t ,Ot). Based on their respective histories, the

defender and the attacker select actions, which define the
defender strategy πD ∈ ΠD : HD → ∆(AD) and the attacker
strategy πA ∈ ΠA : HA → ∆(AA).

D. The Intrusion Response Problem

When selecting the strategy πD the defender must balance
two conflicting objectives: maximize the workflow utility
towards its clients and minimize the cost of intrusion. The
weight η ∈ R captures the trade-off between these two
objectives, which results in the bi-objective function

J ,
∞∑
t=1

γt−1

(∑
w∈W

∑
i∈Vw

ηu
(W)
i,t︸ ︷︷ ︸

workflows utility

− c
(I)
i,t︸︷︷︸

intrusion cost

)
(4)

where γ ∈ [0, 1) is a discount factor, c(I)i,t is the intrusion
cost associated with node i at time t, and u(W)

i,t expresses the
workflow utility associated with node i at time t. We assume
that u(W)

i,t is proportional to the number of active nodes in the
subtree rooted at i and that c(I)i,t = V

(I)
i,t + c(A)(a

(D)
i,t ), where

c(A) is a non-negative function.
Given (4) and an attacker strategy πA, the intrusion response

problem can be stated as

maximize
πD∈ΠD

E(πD,πA) [J ] (5a)

subject to s
(D)
t+1 ∼ fD

(
· | S(D)

t ,A
(D)
t

)
∀t (5b)

s
(A)
t+1 ∼ fA

(
· | S(A)

t ,A
(A)
t ,A

(D)
t

)
∀t (5c)

ot+1 ∼ Z
(
· | S(D)

t+1,S
(A)
t+1) ∀t (5d)

a
(A)
t ∼ πA

(
· | H(A)

t

)
∀t (5e)

a
(D)
t ∼ πD

(
· | H(D)

t

)
∀t (5f)

where E(πD,πA) denotes the expectation of the random vectors
(H

(D)
t ,H

(A)
t )t∈{1,2,...} under the strategy profile (πD, πA);

(5b)–(5c) are the dynamics constraints; (5d) describes the
observations; and (5e)–(5f) capture the actions.

Solving (5) yields an optimal defender strategy against a
static attacker with a fixed strategy. Note that this defender
strategy is generally not optimal against a different attacker
strategy. For this reason, we aim to find a defender strategy
that maximizes the minimum value of J (4) across all possible
attacker strategies. This objective can be formally expressed
as a maxmin problem:

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ] subject to (5b)–(5f) (6)

Solving (6) corresponds to finding a Nash equilibrium [42, Eq.
1] and can be analyzed through game theory.

V. THE INTRUSION RESPONSE GAME

The maxmin problem in (6) defines a stationary, finite,
and zero-sum Partially Observed Stochastic Game with Public
Observations (a PO-POSG) [43, Def. 1]:

Γ = 〈N , (Sk,Ak, fk,b
(k)
1 )k∈N , u, γ,O, Z〉 (7)

The game Γ has two players N = {D,A} with D being
the defender and A being the attacker. (Sk)k∈N are the state
spaces, (Ak)k∈N are the action spaces, and O is observation
space (as defined in §IV). The transition functions (fk)k∈N are
defined by (5b)–(5c), the observation function Z is defined in
(3), and the utility function u(st,a

(D)
t ) is the expression within

brackets in (4). (b
(k)
1 )k∈N are the state distributions at t = 1

and γ is the discount factor in (4).

Game play. When the game starts at t = 1, s
(D)
1 and

s
(A)
1 are sampled from b

(D)
1 and b

(A)
1 . A play of the game

proceeds in time-steps t = 1, 2, . . .. At each time t, the
defender observes h

(D)
t and the attacker observes h

(A)
t . Based

on these histories, both players select actions according to
their respective strategies, i.e. a

(D)
t ∼ πD(· | h

(D)
t ) and

a
(A)
t ∼ πA(· | h(A)

t ). As a result of these actions, five events
occur at time t + 1: (i) ot+1 is sampled from Z; (ii) s

(D)
t+1

is sampled from fD; (iii) s
(A)
t+1 is sampled from fA; (iv) the

defender receives the utility u(st,a
(D)
t ); and (v) the attacker

receives the utility −u(st,a
(D)
t ).

Belief states. Based on their histories h
(D)
t and h

(A)
t , both

players form beliefs about the unobservable components of
the state st, which are expressed through the belief states
b

(D)
t (s

(A)
t ) , P[s

(A)
t | H(D)

t ] and b
(A)
t (s

(D)
t ) , P[s

(D)
t |

H
(A)
t ]. The belief states are updated at each time t > 1

via [43, Eq. 1] and are realizations of B
(D)
t and B

(A)
t .

The initial beliefs at t = 1 are the degenerate distributions
b

(D)
1 (02|V|) = 1 and b

(A)
1 (s

(D)
1 ) = 1, where 0n is the n-

dimensional zero-vector and s
(D)
1 is given by the infrastructure

configuration (see §IV).

4



Best response strategies. A defender strategy π̃D ∈ ΠD is
called a best response against πA ∈ ΠA if it maximizes J (4).
Similarly, an attacker strategy π̃A is called a best response
against πD if it minimizes J (4). Hence, the best response
correspondences are

BD(πA) , arg max
πD∈ΠD

E(πD,πA)[J ] (8)

BA(πD) , arg min
πA∈ΠA

E(πD,πA)[J ] (9)

Optimal strategies. An optimal defender strategy π∗D is a best
response strategy against any attacker strategy that minimizes
J . Similarly, an optimal attacker strategy π∗A is a best response
against any defender strategy that maximizes J . Hence, when
both players follow optimal strategies, they play best response
strategies against each other:

(π∗D, π
∗
A) ∈ BD(π∗A)×BA(π∗D) (10)

Since no player has an incentive to change its strategy,
(π∗D, π

∗
A) is a Nash equilibrium [42, Eq. 1].

We know from game theory that Γ has a mixed Nash equi-
librium [43]–[45] and we know from Markov decision theory
that BD(πA) and BA(πD) are non-empty [26], [46]. Based on
these standard results, we state the following theorem.
Theorem 1.
(A) The game Γ (7) with instantiation described in §IV has

a mixed Nash equilibrium.
(B) The best response correspondences (8)–(9) in Γ with the

instantiation described in §IV satisfy |BD(πA)| > 0 and
|BA(πD)| > 0 ∀(πA, πD) ∈ ΠA ×ΠD.

Proof. The statement in (A) follows from the following suffi-
cient conditions: (i) Γ is stationary, finite, and zero-sum; (ii)
Γ has public observations; and (iii) γ ∈ [0, 1). Due to these
conditions, the existence proofs in [44, §3], [45, Thm. 2.3],
and [43, Thm. 1] apply, which show that Γ can be modeled as
a finite strategic game, for which Nash’s theorem applies [42,
Thm. 1]. In the interest of space we do not restate the proof.

To prove (B), we note that obtaining a pair of best response
strategies (π̃D, π̃A) ∈ BD(πA)×BA(πD) for a given strategy
pair (πA, πD) ∈ ΠA × ΠD amounts to solving two finite
and stationary POMDPs (Partially Observed Markov Decision
Processes) with discounted utilities. It then follows from
Markov decision theory that a pair of pure best response
strategies (π̃D, π̃A) exists [46, Thm. 6.2.7] [26, Thm. 7.6.1-
7.6.2]. For the sake of brevity we do not restate the proof,
which is based on Banach’s fixed-point theorem [47, Thm. 6,
p. 160].

VI. DECOMPOSING THE INTRUSION RESPONSE GAME

In this section we present the main contribution of the paper.
We show how the game Γ (7) with the instantiation described
in §IV can be recursively decomposed into subgames with
optimal substructure [25, Ch. 15], which means that a best
response (8)–(9) of the original game can be obtained from
best responses of the subgames. We further show that best
responses of the subgames can be computed in parallel and

Notation(s) Description

G,Gw , Infrastructure tree, subtree of w
V, E , Sets of nodes and edges in G
Vw, Ew Sets of nodes and edges in Gw
Z,W Sets of network zones and workflows
AD,AA(st) Defender and attacker action spaces at time t
A(V)

D ,A(V)
A (st) Action spaces per node at time t, Ak = (A(V)

k )|V|

O(V) Observation space per node at time t, O = (O(V))|V|

v
(I)
i,t , v

(Z)
i,t , v

(R)
i,t Intrusion state and zone of i ∈ V at time t

v
(R)
i,t Reconnaissance state of i ∈ V at time t

V
(I)
i,t , V

(Z)
i,t , V

(R)
i,t Random variables with realizations v(I)i,t , v

(Z)
i,t , v

(R)
i,t

Γ,N PO-POSG (7), set of players
u,S,O Utility function, state space, observation space
st = (s

(D)
t , s

(A)
t ) State at time t

at = (a
(D)
t ,a

(A)
t ) Action at time t

ot,ut,a
(k)
t ,h

(k)
t Observation and utility at time t

a
(k)
t ,h

(k)
t Action and history of player kat time t

Bk,b
(k)
t Belief space and belief state of player k

π̃k, ã
(k) Best response strategy and action of player k

St,Ot,At Random vectors with realizations st,ot,at

Ut,B
(k)
t ,H

(k)
t Random vectors with realizations ut,b

(k)
t ,h

(k)
t

πk, Z Strategy of player k, observation distribution
u
(w)
i,t Workflow utility of node i at time t
⊥, an(i), Null action, set of i and its ancestors in G
αi,t Active status of node i at time t
fA, fD, Bk Attacker and defender transition functions
Bk Best response correspondence of player k

c
(I)
i,t Intrusion cost associated with node i at time t
c(A) Action cost function

TABLE 1: Notations for our mathematical model.

1 2 3 4 5

104

105

2

105

|S| = (|Z|4)|V|

|O| = (O(V))|V|

|Ak| = |A
(V)
k ||V|

|V|

Fig. 6: Growth of |S|, |O|, and |Ak| in function of the number
of nodes |V|, where k ∈ {D,A}; the curves are computed
using |Z| = 10, |O(V)| = 100, and |A(V)

D | = |A
(V)
A | = 10.

that the space complexity of a subgame is independent of the
number of nodes |V|. Note that the space complexity of the
original game increases exponentially with |V| (see Fig. 6).

Theorem 2 (Decomposition theorem).
(A) The game Γ (7) with the instantiation described in §IV

can be decomposed into independent workflow subgames
Γ(w1), . . . ,Γ(w|W|). Due to their independence, the sub-
games have optimal substructure.

(B) Each subgame Γ(w) can be further decomposed into node
subgames (Γ(i))i∈Vw with optimal substructure and space
complexities independent of |V|.

(C) For each subgame Γ(i), a best response strategy for
the defender can be characterized by switching curves,
under the assumption that the observation distributions
ZO1|s(A) , . . . , ZO|V||s(A) (3) are totally positive of order

5



2 (i.e. TP-2 [26, Def. 10.2.1]).

Statements A and B express that Γ decomposes into simpler
subgames, which consequently can be solved in parallel (see
Fig. 7). This decomposition implies that the largest game that
is tractable on a given compute platform scales linearly with
the number of processors. Further, statement C says that a
best response strategy for the defender in each subgame can
be characterized by switching curves, which can be estimated
efficiently.

In the following sections we provide proofs of Thm. 2.A–C.
The requisite notations are given in Table 1.

A. Proof of Theorem 2.A

Following the instantiation of Γ described in §IV, the state,
observation, and action spaces factorize as

S = (Z × {0, 1}2)|V|,O = (O(V))|V|,Ak = (A(V)
k )|V| (11)

for player k ∈ {D,A}, where O(V), A(V)
D , and A(V)

A denote
the local observation and action spaces for each node.

Since each node belongs to exactly one workflow,
(11) implies that Γ can be decomposed into subgames
Γ(w1), . . . ,Γ(w|W|). To show that the subgames are indepen-
dent, it suffices to show that the workflows are observation-
independent, transition-independent, and utility-independent
[31, Defs. 32,33,35].

From (3) we have

Z
(
Oi,t+1 | S(D)

t+1,S
(A)
t+1

)
= Z

(
Oi,t+1 | S(D)

i,t+1,S
(A)
i,t+1

)
(12)

which implies observation independence across nodes i ∈ V
and therefore across workflows [31, Def. 33].

From the definitions in §IV and (1)–(2) we have

fD(S
(D)
i,t+1|S

(D)
t ,A

(D)
t ) = fD(S

(D)
i,t+1|S

(D)
i,t ,A

(D)
i,t )

fA(S
(A)
i,t+1|S

(A)
t ,A

(A)
t ,A

(D)
t ) = fA(S

(A)
i,t+1|S

(A)
i,t ,A

(A)
i,t ,A

(D)
i,t )

which implies transition independence across nodes i ∈ V and
therefore across workflows [31, Def. 32].

Following (4) and the definition of u(W)
i,t (see §IV-D) we

can rewrite u(st,a
(D)
t ) as

u(st,a
(D)
t ) =

∑
w∈W

,uw︷ ︸︸ ︷∑
i∈Vw

ηu
(W)
i,t − c

(I)
i,t (a

(D)
i,t , V

(I)
i,t )

=
∑
w∈W

uw

((
si,t,a

(D)
i,t

)
i∈Vw

)
(13)

The final expression in (13) is a sum of workflow utility
functions, each of which depends only on the states and
actions of one workflow. Hence, Γ(w1), . . . ,Γ(w|W|) are utility
independent [31, Def. 35].

B. Proof of Theorem 2.B

Our goal is to show that a workflow subgame Γ(w) de-
composes into node-level subgames with optimal substructure.
That is, we aim to show that a best response in Γ(w) can be
constructed from best responses of the subgames.

Following the description in §IV, we know that the nodes
in a workflow are connected in a tree and that the utility
generated by a node i depends on the number of active
nodes in the subtree rooted at i. Taking into account this
tree structure and the definition of the utility function, we
decompose Γ(w) into node subgames (Γ(i))i∈Vw where each
subgame depends only on the local state and action of a single
node. It follows from (11) that this decomposition is feasible
and that the space complexity of a subgame is independent
of |V|. Further, we know from Thm. 2.A that the subgames
are transition-independent and observation-independent but
utility-dependent. To prove optimal substructure it therefore
suffices to show that it is possible to redefine the utility
functions for the subgames such that at each time t, the
best response action in Γ(w) for any node i is also a best
response in Γ(i) and vice versa. For the sake of brevity
we give the proof for the defender only. The proof for the
attacker is analogous. In this proof, for better readability,
we omit the constants γ, η and use the shorthand notations
s

(D)
w,t , (s

(D)
j,t )j∈Vw , b

(D)
w,t , (b

(D)
j,t )j∈Vw , V , V ∗D,πA

, and
τ ∈ arg mink>t a

(D)
k 6= ⊥, where V is the value function [26,

Thm. 7.4.1]. Further, we use an(i) to denote the set of node
i and its ancestors in the infrastructure graph G.

From Bellman’s optimality equation [48, Eq. 1] a best
response action for node i at time t in Γ(w) against an attacker
strategy πA is given by

arg max
a
(D)
i,t ∈A

(V)
D

[
E
πA

[
Ut + V (S

(D)
t+1,B

(D)
t+1)

∣∣∣s(D)
t ,b

(D)
t ,a

(D)
i,t

]]

(a)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[
−c(I)i,t + V (S

(D)
t+1,B

(D)
t+1)

∣∣∣s(D)
t ,b

(D)
t ,a

(D)
i,t

]]

(b)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[
−c(I)i,t +

∞∑
k=t+1

∑
j∈Vw

Uj,k

∣∣∣
,κ︷ ︸︸ ︷

s
(D)
w,t,b

(D)
w,t,a

(D)
i,t

]]

(c)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[
−c(I)i,t +

τ∑
k=t+1

∑
j∈Vw

Uj,k

∣∣∣κ]]

(d)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[
−c(I)i,t +

τ∑
k=t+1

∑
j∈an(i)

Uj,k

∣∣∣κ]]

(e)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[
−c(I)i,t +

τ∑
k=t+1

∑
j∈an(i)

u
(W)
j,k − c

(I)
j,k

∣∣∣κ]]

(f)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[ ,ω︷ ︸︸ ︷
−c(I)i,t +

τ∑
k=t+1

|an(i)|αi,t+1 − c(I)i,k
∣∣∣κ]]

(g)
= arg max

a
(D)
i,t ∈A

(V)
D

[
E
πA

[
ω
∣∣∣ s(D)

i,t ,b
(D)
i,t ,a

(D)
i,t

]]
(14)

where Ut denotes the vector of utilities for all nodes at time
t. (a) holds because (Uj,t)j∈V\{i} and u(W)

i,t are independent
of a

(D)
i,t and therefore does not affect the maximization;

(b) follows from the utility independence across workflows
(Thm. 2.A) and the definition of the value function V [26,
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π
(w1)
k

π
(w2)
k

π
(w|W|)

k

h
(k)
w1,t

h
(k)
w2,t

h
(k)
w|W|,t

...

⊕

a
(k)
w1,t

a
(k)
w2,t

a
(k)
w|W|,t

a
(k)
t

(a) Theorem 2.A

π
(1)
k

h
(k)
1,t ⊕

π
(2)
k

h
(k)
2,t ⊕

π
(|Vw|)
k

h
(k)
|Vw|,t⊕

...

⊕(a
(k)
2,t ) a

(k)
w,t

(a
(k)
|Vw|,t)

(a
(k)
1,t )

|an(0)|

|an(1)|

|an(|Vw|)|

(b) Theorem 2.B

sub-simplex B(i)
D,e1

joining e2 and e3

Stopping set
S

(i)
D

b̂
(D)
5

b̂
(D)
4

b̂
(D)
3

b̂
(D)
2

b̂
(D)
1

b̂
(D)
6

b̂
(D)
7

b̂
(D)
8

b̂
(D)
9

Continuation set
C

(i)
D

Belief space
B(i)

D

L(e1, b̂
(D)
3 )

Switching curve
Υ

Threshold belief state αb̂8

e1

(1, 0, 0)
e2

(0, 1, 0)

e3

(0, 0, 1)

(c) Theorem 2.C

Fig. 7: Illustrations of Thm. 2; arrows indicate inputs and outputs; ⊕ denotes vector concatenation; k ∈ {D,A}; h
(k)
w,t ,

(h
(k)
j,t )j∈Vw ; and a

(k)
w,t , (a

(k)
j,t )j∈Vw ; (a) illustrates that a game strategy πk decomposes into |W| independent substrategies;

(b) illustrates that a workflow strategy π(w)
k for w ∈ W decomposes into substrategies (π

(i)
k )i∈Vw with optimal substructure;

(c) provides a geometric illustration of the proof of Thm. 2.C, showing a switching curve that partitions the defender’s belief
space of a node i ∈ V .

Thm. 7.4.1]; (c) holds because any a
(D)
i,t except ⊥ leads

to s
(A)
i,t+1 = (0, 0), which means that all state variables at

time k > τ are independent of a
(D)
i,t and can therefore be

moved outside the arg max operator; (d) follows because
(Uj,t)j∈V\an(i) is independent of a

(D)
i,t ; (e) is an expansion

of (Uj,k)j∈an(i),k∈{t+1,...,τ} based on (4); and (f)-(g) follow
because the terms in (u

(W)
j,k )j∈an(i),k∈{t+1,...,τ} that depend

on a
(D)
i,t equal k|an(i)|αt+1,i, where k is the constant of

proportionality (see §IV). (Recall that αi,t = 1 if node i is
active at time t and αi,t = 0 otherwise.)

The final expression in (14) depends only on local infor-
mation related to node i. This means that we can use it to
define utility functions of the subgames (Γ(i))i∈Vw such that
they become utility-independent. Further, since the maximizer
of the final expression in (14) is also a maximizer of the first
expression, it follows that a a best response in Γ(i) is also a
best response for node i in Γ(w) and thus in Γ (Thm. 2.A).
Hence (Γ(i))i∈Vw have optimal substructure.

C. Proof of Theorem 2.C

The idea behind this proof is that the problem of selecting
which defensive action to apply in a subgame Γ(i) (Thm.
2.B) against a given attacker strategy can be separated from
the problem of deciding when to apply it. Through this
separation, we can analyze the latter problem using optimal
stopping theory. Applying a recent result by Krishnamurthy
[26, Thm. 12.3.4], the optimal stopping strategy in Γ(i) can
be characterized by switching curves.

We perform the above separation by decomposing a
(D)
i,t

into two subactions: a
(D,1)
i,t and a

(D,2)
i,t which realize A

(D,1)
i,t

and A
(D,2)
i,t . The first subaction a

(D,1)
i,t 6= ⊥ determines the

defensive action and the second subaction a
(D,2)
i,t ∈ {S,C}

determines when to take it. Specifically, if a
(D,2)
i,t = C,

then a
(D)
i,t = ⊥, otherwise a

(D)
i,t = a

(D,1)
i,t . Using this action

decomposition, at each time t, a strategy π(i)
D in Γ(i) is a joint

distribution over A(D,1)
i,t and A

(D,2)
i,t , which means that it can

be represented in an auto-regressive manner as

π
(i)
D (A

(D,1)
i,t ,A

(D,2)
i,t | H(k)

i,t ) (15)

(a)
= π

(i)
D (A

(D,1)
i,t | H(D)

i,t )π
(i)
D (A

(D,2)
i,t | H(D)

i,t ,A
(D,1)
i,t )

(b)
= π

(i)
D (A

(D,1)
i,t | B(D)

i,t ,S
(D)
i,t )π

(i)
D (A

(D,2)
i,t | B(D)

i,t ,S
(D)
i,t ,A

(D,1)
i,t )

(c)
= π

(i)
D (A

(D,1)
i,t | S(D)

i,t )π
(i)
D (A

(D,2)
i,t | B(D)

i,t ,S
(D)
i,t ,A

(D,1)
i,t )

where (a) follows from the chain rule of probability; (b) holds
because (S

(D)
i,t ,B

(D)
i,t ) is a sufficient statistic for H(D)

i,t [26, Thm
7.2.1]; and (c) follows because

arg max
a
(D,1)
i,t ∈A(V)

D \⊥

[
η|an(i)|αi,t+1 − c(I)i,t (V

(I)
i,t ,a

(D,1)
i,t )+ (16)

γE
[
V (S

(D)
i,t+1,B

(D)
i,t+1)

∣∣∣ s(D)
i,t ,b

(D)
i,t ,a

(D,1)
i,t

]]
(a)
= arg max

a
(D,1)
i,t ∈A(V)

D \⊥

[
η|an(i)|αi,t+1 − c(A)(a

(D,1)
i,t )+

γE
[
V (S

(D)
i,t+1,B

(D)
i,t+1)

∣∣∣ s(D)
i,t ,b

(D)
i,t ,a

(D,1)
i,t

]]
(b)
= arg max

a
(D,1)
i,t ∈A(V)

D \⊥

[
η|an(i)|αi,t+1 − c(A)(a

(D,1)
i,t )

γE
[
V (S

(D)
i,t+1, e1)

∣∣∣ s(D)
i,t ,a

(D,1)
i,t

]]

which means that a
(D,1)
i,t 6= ⊥ is independent of B

(D)
i,t . The

first statement in (16) is the Bellman equation [48, Eq. 1]; (a)
holds because V (I)

i,t is independent of a
(D,1)
i,t ; and (b) is true

because any a
(D,1)
i,t 6= ⊥ leads to S

(A)
i,t+1 = (0, 0) and thus to

B
(D)
i,t+1 = e1 = (1, 0, 0). (Recall that the belief space B(i)

D is
the two-dimensional unit simplex.)

The strategy decomposition in (15) means that we can
obtain a best response strategy in Γ(i) by jointly optimizing
two substrategies: π(i,1)

D and π
(i,2)
D . The former corresponds

to solving an MDP M (D,1) with state space s
(D)
i ∈ Z

and the latter corresponds to solving a set of optimal stop-
ping POMDPs (M

(D,2)

i,s(D),a(D))s(D)∈Z,a(D)∈A(V)
D

with state space

s
(A)
i ∈ {(0, 0), (1, 0), (1, 1)}.
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Each stopping problem can be defined with a single stop
action rather than multiple stop actions [3, §III.C] because

arg max
πD∈Π

(i,2)
D

[
EπD

[ ∞∑
t=1

γt−1Ui,2,t

∣∣∣ B(D)
i,1 = e1

]]

= arg max
πD∈Π

(i,2)
D

[
EπD

[ τ1∑
t=1

γt−1Ui,2,t

∣∣∣ B(D)
i,1 = e1

]
+

EπD

[ τ2∑
t=τ1+1

γt−1Ui,2,t

∣∣∣ B(D)
i,τ1+1 = e1

]
+ . . .

]

= arg max
πD∈Π

(i,2)
D

[
EπD

[ τ1∑
t=1

γt−1Ui,2,t

∣∣∣ B(D)
i,1 = e1

]]
(17)

where Π
(i,2)
D , Ui,2,t, and τ1, τ2, . . . denote the strategy space,

utility, and stopping times in M
(D,2)

i,s(D),a(D) . Note that the belief

space B(i)
D for each stopping problem is the 2-dimensional unit

simplex and that B(D)
i,τj+1 = e1 = (1, 0, 0) for each stopping

time τj since a
(D,2)
i,τj

= S =⇒ s
(A)
i,τj+1 = (0, 0).

The transition matrices for each stopping problem are of the
form: 1− p p 0

0 1− q q
0 0 1

 and

1 0 0
1 0 0
1 0 0

 (18)

where p is the probability that the attacker performs reconnais-
sance and q is the probability that the attacker compromises
the node. The left matrix in (18) relates to a

(D,2)
i,t = C and the

right matrix relates to a
(D,2)
i,t = S. The non-zero second order

minors of the matrices are (1−p)(1−q), pq, 1−q, 1−p, p, and
(1 − p)q, which implies that the matrices are TP-2 [26, Def.
10.2.1]. Since the distributions ZO1|s(A) , . . . , ZO|V||s(A) also
are TP-2 by assumption, it follows from [26, Thm. 12.3.4]
that there exists a switching curve Υ that partitions B(i)

D into
two individually connected regions: a stopping set S

(i)
D where

a
(D,2)
i,t = S is a best response and a continuation set C

(i)
D where

a
(D,2)
i,t = C is a best response (see Fig. 7c).
The argument behind the existence of a switching curve is

as follows [26, Thm. 12.3.4]. On any line segment L(e1, b̂
(D))

in B(i)
D that starts at e1 and ends at the subsimplex joining e2

and e3 (denoted with b̂(D) ∈ B(i)
D,e1

), all belief states are totally
ordered with respect to the Monotone Likelihood Ratio (MLR)
order [26, Def. 10.1.1]. As a consequence, Topkis’s theorem
[49, Thm. 6.3] implies that the optimal strategy on L(e1, b̂

(D))
is monotone with respect to the MLR order. Consequently,
there exists a threshold belief state αb̂(D) on L(e1, b̂

(D)) where
the optimal strategy switches from C to S. Since B(i)

D can
be covered by the union of lines L(e1, b̂

(D)), the thresholds
α
b̂

(D)
1
, α

b̂
(D)
2
, . . . yield a switching curve Υ.

VII. FINDING NASH EQUILIBRIA OF THE
DECOMPOSED INTRUSION RESPONSE GAME

To find a Nash equilibrium of Γ (7) we develop a fictitious
self-play algorithm called Decompositional Fictitious Self-
Play (DFSP), which estimates Nash equilibria based on the

THE INTRUSION RESPONSE GAME Γ

s1,1 s1,2 s1,3 . . . s1,4

s2,1 s2,2 s2,3 . . . s2,4

DIGITAL TWIN

. . .

Virtual
network

Virtual
devices

Emulated
services

Emulated
actors

TARGET INFRASTRUCTURE
Change events

System identification

Verified defender strategy

Optimized defender strategy

Fig. 8: The digital twin is a virtual replica of the target
infrastructure and is used for evaluation and data collection.

decomposition presented above. The pseudocode is listed in
Alg. 1. (In Alg. 1, ⊕ denotes vector concatenation, −k denotes
the opponent of player k, and M

(k)
i denotes the best response

POMDP of k in Γ(i) (Thm 2).)

Algorithm 1: DFSP

1 Input: P-SOLVER: a POMDP solver,
2 δ: convergence criterion, Γ: the PO-POSG

3 Output: An approximate Nash equilibrium

4 Algorithm DFSP (P-SOLVER, δ, Γ)
5 Initialize πD, πA, δ̂

6 while δ̂ ≥ δ do
7 in parallel for k ∈ {D,A} do
8 πk ←LOCAL-BRS(P-SOLVER,Γ, k, π−k)
9 π̃k ←COMPOSITE-STRATEGY(Γ,πk)

10 πk ←AVERAGE-STRATEGY(πk, π̃k)

11 δ̂ ←EXPLOITABILITY(π̃D,π̃A)
12 end
13 return (πD, πA)
14 Procedure LOCAL-BRS(P-SOLVER,Γ, k, π−k)
15 πk ← ()
16 in parallel for w ∈ W , (i) ∈ Vw do
17 πk ← πk⊕ P-SOLVER(M (k)

i , π−k)
18 return πk

19 Procedure COMPOSITE-STRATEGY(Γ,πk)

20 return πk ←Procedure λ (s(k)
t , b(k)

t )
21 a

(k)
t ← ()

22 for w ∈ W , i ∈ Vw do
23 a

(k)
t ← a

(k)
t ⊕ (π

(i)
k (s

(k)
i,t ,b

(k)
i,t ))

24 end
25 return a

(k)
t

DFSP implements the fictitious play process described in
[50] and generates a sequence of strategy profiles (πD, πA),
(π′D, π′A), . . . that converges to a Nash equilibrium (π∗D, π

∗
A)

[51, Thms. 7.2.4–7.2.5]. During each step of this process, DFSP
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Fig. 9: Empirical observation distributions ẐO1
, . . . , ẐO|V| as estimates of ZO1

, . . . , ZO|V| in the target infrastructure (depicted
in Fig. 1); Oi is a random variable representing the number of IDPS alerts related to node i ∈ V , weighted by priority; the
x-axes show the local observation spaces O(V) for each node; the y-axes show Z(Oi | Si) (3).

learns best responses against the players’ current strategies and
then updates both players’ strategies (lines 7–11 in Alg. 1). To
obtain the best responses, it first finds best responses for the
node subgames as constructed in the proof of Thm. 2.B (lines
14–18), and then it combines them using the method described
in §VI-B (lines 19–25).

Finding best responses for node subgames amounts to solv-
ing POMDPs. The principal method for solving POMDPs is dy-
namic programming [26]. Dynamic programming is however
intractable in our case, as demonstrated in Fig. 10b. To find the
best responses we instead resort to approximation algorithms.
More specifically, we use the Proximal Policy Optimization
(PPO) algorithm [52, Alg. 1] to find best responses for the
attacker and we use a combination of dynamic programming
and stochastic approximation to find best responses for the
defender. In particular, to find best responses for the defender,
we first solve the MDP defined in §VI-C via the value iteration
algorithm [26, Eq. 6.21], which can be done efficiently due
to full observability. After solving the MDP, we approximate
the optimal switching curves defined in the proof of Thm.
2.C (§VI-C) with the following linear approximation [26, Eq.
12.18].

πD(b(D)) =

S if
[
0 1 θ

] [(b(D))T

−1

]
> 0

C otherwise
(19)

subject to θ ∈ R2, θ2 > 0, and θ1 ≥ 1

The coefficients θ in (19) are estimated through the stochastic
approximation algorithm in [26, Alg. 14] and [3, Alg. 1].

VIII. DIGITAL TWIN AND SYSTEM IDENTIFICATION

The DFSP algorithm described above approximates a Nash
equilibrium of Γ (7) by simulating games and updating
both players’ strategies through reinforcement learning and
dynamic programming. To identify the parameters required
to instantiate these simulations and to evaluate the learned
strategies, we use a digital twin of the target infrastructure
(see Fig. 8). This section describes the digital twin (§VIII-A)
and the identification process (§VIII-B).

A. Creating a Digital Twin of the Target Infrastructure

We create a digital twin of the target infrastructure shown
in Fig. 1 through an emulation system. Documentation of this
emulation system is available in [6].

The process of creating the digital twin involves two main
tasks. The first task is to replicate relevant parts of the physical
infrastructure that is emulated, such as physical resources, net-
work interfaces, and network conditions. This task is described
in §VIII-A1. The second task is to emulate actors in the digital
twin (e.g. the attacker, the defender, and the client population).
We describe this task in §VIII-A2.

1) Emulating physical resources: The physical resources
of the target infrastructure are emulated through the following
steps.
Emulating physical hosts. Physical hosts are emulated with
Docker containers [53], i.e. lightweight executable packages
that include runtime systems, code, system tools, system
libraries, and configurations. Resource allocation to containers,
e.g. CPU and memory, is enforced using CGROUPs. The
software functions running inside the containers replicate
important components of the target infrastructure, such as,
web servers, databases, the SNORT IDPS [54], and the RYU
SDN controller [55].
Emulating physical switches. Physical switches are emulated
with Docker containers that run Open vSwitch (OVS) [56] and
may connect to a controller through the OPENFLOW protocol
[57]. (Since the switches are programmed through flow tables,
they can act either as classical layer 2 switches or as routers,
depending on the flow table configurations.)
Emulating physical network links. Network connectivity is
emulated with virtual links implemented by Linux bridges.
Network isolation between virtual containers on the same
physical host is achieved through network namespaces, which
create logical copies of the physical host’s network stack. To
connect containers on different physical hosts, the emulated
traffic is tunneled over the physical network using VXLAN
tunnels [58].
Emulating network conditions. Network conditions of virtual
links are configured using the NETEM module in the Linux
kernel [59]. This module allows fine-gained configuration of
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Type Actions

Reconnaissance TCP SYN scan, UDP port scan, TCP XMAS scan
VULSCAN vulnerability scanner, ping-scan

Brute-force TELNET, SSH, FTP, CASSANDRA,
IRC, MONGODB, MYSQL, SMTP, POSTGRES

Exploit CVE-2017-7494, CVE-2015-3306,
CVE-2010-0426, CVE-2015-5602,CVE-2015-1427
CVE-2014-6271, CVE-2016-10033, CWE-89

TABLE 2: Attacker actions in the digital twin; exploits
are identified according to the Common Vulnerabilities and
Exposures (CVE) database [63] and the Common Weakness
Enumeration (CWE) list [64].

bit rates, packet delays, packet loss probabilities, jitter, and
packet reordering probabilities.

We emulate connections between servers as full-duplex loss-
less connections of 1 Gbit/s capacity in both directions. We
emulate connections between the gateway and the external
client population as full-duplex connections of 100 Mbit/s
capacity and 0.1% packet loss with random bursts of 1%
packet loss. (These numbers are based on measurements on
enterprise and wide-area networks [60]–[62].)

2) Emulating Actors in the Digital Twin: In this section,
we describe how actors of the intrusion response use case
described in §III are emulated in the digital twin.

Emulating the client population. The client population is
emulated by processes in Docker containers. Clients interact
with application servers through the gateway by consuming
workflows. The workflow of a client is selected uniformly
at random and its sequence of service invocations is decided
uniformly at random. Client arrivals per time-step are emulated
using a stationary Poisson process with rate λ = 50 and
exponentially distributed service times with mean µ = 4. The
duration of a time-step is 30 seconds.

Emulating the attacker. The attacker’s actions are emulated
by executing scripts that automate exploits (see Table 2).

Emulating the defender. The four types of defender actions
(see Fig. 4) are emulated as follows. To emulate the server
migration action, we remove all virtual network interfaces of
the emulated server and add a new interface that connects
it to the new zone. To emulate the flow migration/blocking
action we add rules to the flow tables of the emulated switches
that match all flows towards the server and redirect them to a
given destination. To emulate the server shut down action, we
shut down the virtual container corresponding to the emulated
server. Finally, to emulate the access control action, we reset
all user accounts and certificates on the emulated server.

B. Estimating the Observation Distributions

Following the intrusion response use case described in §III,
we define the observation Oi,t to be the number of IDPS alerts
associated with node i at time t, weighted by priority. As
our target infrastructure consists of 64 nodes (see App. C and
Fig. 1), there are 64 alert distributions ZO1

, . . . , ZO64
(3). We

estimate these distributions based on empirical data from the
digital twin.

At the end of every time-step in the digital twin we collect
the number of IDPS alerts that occurred during the time-
step. These values are then used to compute the vector ot,
which contains the total number of IDPS alerts per node,
weighted by priority. For the evaluation in this paper we collect
measurements from 104 time-steps using the Snort IDPS [54].
(Each time-step in the digital twin is 30 seconds.) Based on
these measurements, we compute the empirical distributions
ẐO1

, . . . , ẐO64
as estimates of ZO1

, . . . , ZO64
(see Fig. 9).

We observe in Fig. 9 that the distributions differ between
nodes, which can be explained by the different services
provided by the nodes (see App. C). We further observe
that both the distributions when no intrusion occurs and the
distributions during intrusion have most of their probability
masses within [0, 300]. The distributions during intrusion also
have substantial probability mass at larger values.

Remark: the stochastic matrices with the rows
Ẑ
Oi|s(A)

i =(0,0)
and Ẑ

Oi|s(A)
i 6=(0,0)

have 250×109 second-order
minors, which are almost all non-negative. This suggests that
the TP-2 assumption in Thm. 2.C can be made.

IX. EXPERIMENTAL EVALUATION

Our approach to find near-optimal defender strategies in-
cludes learning Nash equilibrium strategies via the DFSP
algorithm and evaluating strategies in the digital twin (see Fig.
2). This section describes the evaluation results.

Experiment setup. The instantiation of Γ (7) and the hyper-
parameters are listed in App. A. We evaluate DFSP both on
a digital twin of the target infrastructure and in simulations
of synthetic infrastructures. The topology of the target infras-
tructure is depicted in Fig. 1 and its configuration is available
in App. C. The digital twin is deployed on a server with a
24-core INTEL XEON GOLD 2.10 GHz CPU and 768 GB RAM.
Simulations of Γ and executions of DFSP run on a cluster with
2xTESLA P100 GPUS, 4xRTX8000 GPUS, and 3x16-core INTEL

XEON 3.50 GHz CPUS. Code for replicating the experiments is
available in [6].

Convergence metric. To estimate the convergence of the
sequence of strategy pairs generated by DFSP, we use the
approximate exploitability metric δ̂ [66]:

δ̂ = Eπ̂D,πA
[J ]− EπD,π̂A

[J ] (20)

where J is defined in (4) and π̂k denotes an approximate best
response strategy for player k. The closer δ̂ becomes to 0, the
closer (πD, πA) is to a Nash equilibrium.

Baseline algorithms. We compare the performance of our
approach (πdecomposition) with two baselines: πfull and πworkflow.
Baseline πfull solves the full game without decomposition and
πworkflow decomposes the game on the workflow-level only.

We compare the performance of DFSP with that of Neural
Fictitious Self-Play (NFSP) [67, Alg. 1] and PPO [52, Alg.1 ],
which are the most popular algorithms among related work
(see [19, §VII] for a review of algorithms used in related
work).
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(a) Best response learning curves for the target infrastructure and synthetic infrastructures with varying |V| and |W|.

(b) Runtimes of dynamic programming. (c) Best response scalability.

healthy discovered

compromised

0.4

0.38

(d) Best response structure.

Fig. 10: Best response learning via decomposition; (a) shows learning curves in simulation for synthetic infrastructures and the
target infrastructure; the curves show the mean and 95% confidence interval for five random seeds; (b) shows execution times
of computing best responses via dynamic programming and Sondik’s value iteration algorithm [65]; (c) shows the speedup of
our approach when computing best responses with different number of parallel processes; the speedup is calculated as Sn = T1

Tn

where Tn is the completion time with n processes; and (d) shows an estimated switching curve (Thm. 2.C).

Baseline strategies. We compare the defender strategies
learned through DFSP with three baselines. The first baseline
selects actions uniformly at random. The second baseline
assumes prior knowledge of the opponent’s actions and acts
optimally based on this information. The last baseline acts
according to the following heuristic: shut down a node i ∈ V
when an IDPS alert occurs, i.e. when oi,t > 0.

A. Learning Best Responses Against Static Opponents

We first examine whether our method can discover effective
strategies against a static opponent strategy, which in game-
theoretic terms is the problem of finding best responses (8)–
(9). The static strategies are defined in App. B.

To measure the scalability of πdecomposition we compare its
performance with πworkflow and πfull on synthetic infrastruc-
tures with varying number of nodes |V| and workflows |W|. To
evaluate the optimal stopping approach described in §VII we
compare its rate of convergence with that of PPO. Figure 10a
shows the learning curves. The red, purple, and pink curves
represent the results obtained with πdecomposition; the blue and
beige curves represent the results obtained with πworkflow; the
orange and green curves represent the results obtained with
πfull; and the dashed black lines relate to the baseline strategy
that assumes prior knowledge of the opponent’s strategy.

We note that all the learning curves of πdecomposition converge
near the dashed black lines, which suggests that the learned
strategies are close to best responses. In contrast, the learning
curves of πworkflow and πfull do not converge near the dashed
black lines within the measured time. This is expected as
πworkflow and πfull can not be parallelized like πdecomposition. (The
speedup of parallelization is shown in Fig. 10c.) Lastly, we
note in the rightmost plot of Fig. 10a that the optimal stopping

approach, which exploits the statement in Thm. 2.C, converges
significantly faster than PPO. An example of a learned optimal
stopping strategy based on the linear approximation in (19) is
shown in Fig. 10d.

B. Learning Equilibrium Strategies through Self-Play

Figures 11a–11b show the learning curves of the strategies
obtained during the DFSP self-play process and the baselines
introduced above. The red curves represent the results from the
simulator; the blue curves show the results from the digital
twin; the green curve give the performance of the random
baseline; the orange curve relate to the oi,t > 0 baseline; and
the dashed black line gives the performance of the baseline
strategy that assumes prior knowledge of the attacker actions.

We note that all learning curves in Fig. 11a converge,
which suggests that the learned strategies converge as well.
Specifically, we observe that the approximate exploitability
(20) of the learned strategies converges to small values (left
plot), which indicates that the learned strategies approximate
a Nash equilibrium both in the simulator and in the digital
twin. Further, we see from the middle plot that both baseline
strategies show decreasing performance as the attacker updates
its strategy. In contrast, the defender strategy learned through
DFSP improves its performance over time. This shows the
benefit of a game-theoretic approach where the defender
strategy is optimized against a dynamic attacker.

Figure 11b compares DFSP with NFSP on the simulator.
NFSP implements fictitious self-play and can thus be compared
with DFSP with respect to approximate exploitability (20). We
observe that DFSP converges significantly faster than NFSP.
The fast convergence of DFSP in comparison with NFSP is
expected as DFSP is parallelizable while NFSP is not.
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(a) Nash equilibrium learning curves. (b) Comparison DFSP and NFSP.

Fig. 11: Equilibrium learning via DFSP; the red curves show simulation results and the blue curves show emulation results; the
green, orange, purple, and black curves relate to baselines; the figures show approximate exploitability (20) and normalized
utility; the curves indicate the mean and the shaded areas indicate the standard deviation over three random seeds.

C. Discussion of the Evaluation Results

In this work, we propose a framework based on recursive
decomposition for solving the intrusion response use case,
which we validate both theoretically and experimentally. The
key findings can be summarized as follows.

(i) Our framework approximates optimal defender strategies
for a practical IT infrastructure (see Fig. 11a). While we
have not evaluated the learned strategies on the target
infrastructure due to safety reasons, the fact that they
achieve almost the same performance on the digital twin
as on the simulator gives us confidence in the strategies
performance on the target infrastructure.

(ii) Decomposition provides a scalable approach to automate
intrusion responses for IT infrastructures (see Fig. 10a
and Fig. 11b). The intuition behind this finding is that
decomposition allows to design efficient “piece-by-piece”
algorithms that can be parallelized (Thm. 2.A–B).

(iii) The theory of optimal stopping provides insight about
optimal defender strategies, which enables efficient com-
putation of best responses (see the rightmost plot in Fig.
10a). This finding can be explained by the threshold struc-
tures of the best response strategies, which drastically
reduce the search space of possible strategies (Thm. 2.C).

(iv) Static defender strategies’ performance deteriorate against
a dynamic attacker whereas defender strategies learned
through DFSP improve over time (see the right plot in Fig.
11a). This finding is consistent with previous studies that
use game-theoretic approaches (e.g. [36] and [19]) and
suggests limitations of static intrusion response systems,
such as the Snort IDPS.

X. CONCLUSIONS AND FUTURE WORK

We combine game theory, game decomposition, reinforce-
ment learning, and a digital twin in a framework to address
the problem of automated intrusion response for a realistic
use case. We formalize the use case as a partially observed
stochastic game. We prove a decomposition theorem stating
that the game decomposes recursively into subgames that can
be solved in parallel and that the best response defender
strategies exhibit threshold structures. This decomposition
provides us with a scalable approach to learn near-optimal de-
fender strategies, based on which we develop Decompositional
Fictitious Self-Play (DFSP) – a fictitious self-play algorithm for

finding Nash equilibria. To assess the learned strategies for a
target infrastructure, we evaluate them on a digital twin. The
results demonstrate that DFSP converges in reasonable time to
near-optimal strategies both in simulation and on the digital
twin while a state-of-the-art algorithm makes little progress
toward an optimal strategy within the same time frame.
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APPENDIX A
HYPERPARAMETERS AND GAME INSTANTIATION

We instantiate Γ (7) for the experimental evaluation as
follows. Client arrivals are sampled from a stationary Poisson
process Po(λ = 50) and service times are exponentially
distributed with mean µ = 4. In addition to migrate a node,
the defender can shut it down or redirect its traffic to a
honeynet, which we model with the zones S,R ∈ Z . A node
i ∈ V is shutdown if v(Z)

i,t = S and have its traffic redirected
if v(Z)

i,t = R. The set of local attacker actions is A(V)
A =

{⊥, reconnaissance, brute-force, exploit}, which we encode as
{0, 1, 2, 3}. These actions have the following effects on the
state st: a

(A)
i,t = 1 =⇒ v

(R)
i,t = 1, a(A)

i,t = 2 =⇒ v
(I)
i,t = 1

with probability 0.3, and a
(A)
i,t = 3 =⇒ v

(I)
i,t with probability

0.4. We enforce a tree structure on the target infrastructure in
Fig. 1 by disregarding the redundant edges in the R&D zone.
The remaining parameters are listed in Table 3.

APPENDIX B
STATIC DEFENDER AND ATTACKER STRATEGIES

The static defender and attacker strategies for the evaluation
described in §IX-A are defined in (21)–(22). (w.p is short for
”with probability”.)

πD(h
(D)
t )i =


⊥ w.p 0.95

j ∈ Z w.p
0.05

|Z|+ 1

(21)
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Game parameters Values
uw,t, A(V)

D

∑
i∈Vw [gw→t i], Z ∪ {access control,⊥}

|O(V)|, γ, η, |Z|, |W|, |V| 103, 0.9, 0.4, 6, 10, 64

u
(w)
i (⊥, l), u(w)

i (S, l),u(w)
i (R, l), u(w)

i (2, l) 0, 10 + l, 15 + l, 0.1 + l

u
(w)
i (3, l), u(w)

i (4, l), u(w)
i (5, l), u(w)

i (0.8, l) 0.5 + l, 1 + l, 1.5 + l, 2 + l

topology G and s
(D)
1 see Fig. 1

|Vw1 |,|Vw2 |,|Vw3 |,|Vw4 |,|Vw5 |,|Vw6 | 16, 16, 16, 16, 6, 4
|Vw7 |,|Vw8 |,|Vw9 |,|Vw10 | 6, 4, 6, 6
PPO parameters
lr α, batch, # layers, # neurons, clip ε 10−5, 4 · 103t, 4, 64, 0.2
GAE λ, ent-coef, activation 0.95, 10−4, ReLU
NFSP parameters
lr RL, lr SL, batch, # layers,# neurons, MRL 10−2, 5 · 10−3, 64, 2,128, 2× 105

MSL,ε, ε-decay, η 2× 106, 0.06, 0.001, 0.1
Stochastic approximation parameters
c, ε, λ,A, a,N, δ 10, 0.101, 0.602, 100, 1, 50, 0.2

TABLE 3: Hyperparameters ([·] is the Iverson bracket).

πA(h
(A)
t )i =



⊥ if v(I)
i,t = 1

⊥ w.p 0.8 if v(R)
i,t = 0

⊥ w.p 0.7 if v(R)
i,t = 1, v

(I)
i,t = 0

recon w.p 0.2 if v(R)
i,t = 0

brute w.p 0.15 if v(R)
i,t = 1, v

(I)
i,t = 0

exploit w.p 0.15 if v(R)
i,t = 1, v

(I)
i,t = 0

(22)

APPENDIX C
CONFIGURATION OF THE INFRASTRUCTURE IN FIG. 1

The configuration of the target infrastructure (Fig. 1) is
available in Tables 4 and 5.
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ID(s) Type Operating system Zone Services Vulnerabilities

1 Gateway UBUNTU 20 - SNORT (ruleset v2.9.17.1), SSH, OPENFLOW v1.3, RYU SDN controller -
2 Gateway UBUNTU 20 DMZ SNORT (ruleset v2.9.17.1), SSH, OVS v2.16, OPENFLOW v1.3 -
28 Gateway UBUNTU 20 R&D SNORT (ruleset v2.9.17.1), SSH, OVS v2.16, OPENFLOW v1.3 -
3,12 Switch UBUNTU 22 DMZ SSH, OPENFLOW v1.3 , OVS v2.16 -
21, 22 Switch UBUNTU 22 - SSH, OPENFLOW v1.3, OVS v2.16 -
23 Switch UBUNTU 22 ADMIN SSH, OPENFLOW v1.3, OVS v2.16 -
29-48 Switch UBUNTU 22 R&D SSH, OPENFLOW v1.3, OVS v2.16 -
13-16 Honeypot UBUNTU 20 DMZ SSH, SNMP, POSTGRES, NTP -
17-20 Honeypot UBUNTU 20 DMZ SSH, IRC, SNMP, SSH, POSTGRES -
4 App server UBUNTU 20 DMZ HTTP, DNS, SSH CWE-1391
5, 6 App server UBUNTU 20 DMZ SSH, SNMP, POSTGRES, NTP -
7 App server UBUNTU 20 DMZ HTTP, TELNET, SSH CWE-1391
8 App server DEBIAN JESSIE DMZ FTP, SSH, APACHE 2,SNMP CVE-2015-3306
9,10 App server UBUNTU 20 DMZ NTP, IRC, SNMP, SSH, POSTGRES -
11 App server DEBIAN JESSIE DMZ APACHE 2, SMTP, SSH CVE-2016-10033
24 Admin system UBUNTU 20 ADMIN HTTP, DNS, SSH CWE-1391
25 Admin system UBUNTU 20 ADMIN FTP, MONGODB, SMTP, TOMCAT, TS 3, SSH -
26 Admin system UBUNTU 20 ADMIN SSH, SNMP, POSTGRES, NTP -
27 Admin system UBUNTU 20 ADMIN FTP, MONGODB, SMTP, TOMCAT, TS 3, SSH CWE-1391
49-59 Compute server UBUNTU 20 R&D SPARK, HDFS -
60 Compute server DEBIAN WHEEZY R&D SPARK, HDFS, APACHE 2,SNMP, SSH CVE-2014-6271
61 Compute server DEBIAN 9.2 R&D IRC, APACHE 2, SSH CWE-89
62 Compute server DEBIAN JESSIE R&D SPARK, HDFS, TS 3, TOMCAT, SSH CVE-2010-0426
63 Compute server DEBIAN JESSIE R&D SSH, SPARK, HDFS CVE-2015-5602
64 Compute server DEBIAN JESSIE R&D SAMBA, NTP, SSH, SPARK, HDFS CVE-2017-7494

TABLE 4: Configuration of the target infrastructure shown in Fig. 1; each row contains the configuration of one or more
components; vulnerabilities are identified according to the CVE and CWE databases [63], [64].

ID Name Zone Components

1 SPARK 1 R&D 1, 21, 22, 28, (29− 32), (33− 34), (41− 42), (49− 52)
2 SPARK 2 R&D 1, 21, 22, 28, (29− 32), (35− 36), (43− 44), (53− 56)
3 SPARK 3 R&D 1, 21, 22, 28, (29− 32), (37− 38), (45− 46), (57− 60)
4 SPARK 4 R&D 1, 21, 22, 28, (29− 32), (39− 40), (47− 48), (61− 65)
5 Web 1 DMZ 1, 2, 3, 4, 5, 6
6 Web 2 DMZ 1, 2, 3, 7
7 Storage 1 DMZ 1, 2, 3, 8, 9, 10
8 Mail 1 DMZ 1, 2, 3, 11
9 Admin 1 ADMIN 1, 21, 22, 23, 24, 25
10 Admin 2 ADMIN 1, 21, 22, 23, 25, 26

TABLE 5: Workflows of the target infrastructure (Fig. 1).
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