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ZS-OS-Partially Observed Stochastic Games

▶ Applications
▶ Cybersecurity.
▶ Robotics.
▶ Learning theory.

▶ State-of-the-art
▶ Heuristic search value iteration (HSVI).
▶ Deep reinforcement learning (e.g., NFSP).

▶ Limitations of Current Methods
▶ HSVI offers theoretical guarantees but is

not scalable.
▶ Deep reinforcement learning is scalable

but offers no theoretical guarantees.
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Our Method: Shapley Iteration with Aggregated Beliefs
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▶ We convert the POSG into an aggregate belief game.
▶ A (fully observed) stochastic game with finite belief space.

▶ We solve the aggregate belief game through Shapley iteration.

▶ We use the solution to the aggregate game to approximate an
optimal solution to the original game via interpolation.
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Proposition 1 (Convergence (Informal))
SAB converges for any POSG.
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Proposition 2 (Approximation error bound (Informal))
The difference between the estimated value function Ṽ and the
true value function V ⋆ is bounded as

|Ṽ (b) − V ⋆(b)| ≤ ϵ

1 − γ
, for all b ∈ B,

where γ is the discount factor and ϵ is a finite constant defined by

ϵ = max
x∈B

sup
b,b′∈Sx

|V ⋆(b) − V ⋆(b′)|, Sx = {b | b ∈ B, ϕbx = 1}.

Value function V ⋆(b)
Approximation Ṽ (b)
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Comparison with Heuristic Search Value Iteration
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The parameter N controls the size of each game.
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Computational Efficiency
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Scalability
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Comparison between SAB and a deep reinforcement learning method
(NFSP) on a large game where HSVI is computationally intractable.
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Conclusion

▶ We present SAB: Shapley iteration with Aggregated Beliefs.
▶ A new method for approximately solving zero-sum POSGs.
▶ Provides theoretical approximation guarantees.
▶ Computationally scalable and flexible.
▶ Outperforms HSVI and NFSP across three example POSGs.
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