Scalable Solutions to Zero-Sum
Partially Observable Stochastic Games
through Belief Aggregation with
Approximation Guarantees

40th AAAI Conference on Artificial Intelligence
Singapore, January 20-27, 2026

Dr. Kim Hammar and Prof. Tansu Alpcan
{kim.hammar, tansu.alpcan}@unimelb.edu.au

THE UNIVERSITY OF

MELBOURNE




ZS-0S-Partially Observed Stochastic Games

» Applications

» Cybersecurity.
> Robotics.
> Learning theory.

> State-of-the-art
> Heuristic search value iteration (HSVI).

» Deep reinforcement learning (e.g., NFSP).

» Limitations of Current Methods

» HSVI offers theoretical guarantees but is
not scalable.

» Deep reinforcement learning is scalable
but offers no theoretical guarantees.
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Our Method: Shapley Iteration with Aggregated Beliefs
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> We convert the POSG into an aggregate belief game.
> A (fully observed) stochastic game with finite belief space.

» We solve the aggregate belief game through Shapley iteration.

> We use the solution to the aggregate game to approximate an
optimal solution to the original game via interpolation.



Proposition 1 (Convergence (Informal))

SAB converges for any POSG.
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Proposition 2 (Approximation error bound (Informal))
The difference between the estimated value function V' and the
true value function V* is bounded as
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where 7y is the discount factor and € is a finite constant defined by

e=max sup |V*(b)— V*(b')|, Scx={b|be B, =1}
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Comparison with Heuristic Search Value Iteration
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The parameter N controls the size of each game.



Computational Efficiency

_Time (s) to reach approximation error < 10.0
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Time to reach an approximation error of 10.0 or less across the
evaluation games with size N € {1,2,3,4}.



Scalability
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Comparison between SAB and a deep reinforcement learning method
(NFSP) on a large game where HSVI is computationally intractable.



Conclusion

> We present SAB: Shapley iteration with Aggregated Beliefs.
» A new method for approximately solving zero-sum POSGs.
» Provides theoretical approximation guarantees.
» Computationally scalable and flexible.
» Qutperforms HSVI and NFSP across three example POSGs.
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