

Scalable Solutions to Zero-Sum Partially Observable Stochastic Games through Belief Aggregation with Approximation Guarantees

40th AAAI Conference on Artificial Intelligence
Singapore, January 20-27, 2026

Dr. Kim Hammar and Prof. Tansu Alpcan
{kim.hammar, tansu.alpcan}@unimelb.edu.au

THE UNIVERSITY OF
MELBOURNE

ZS-OS-Partially Observed Stochastic Games

► Applications

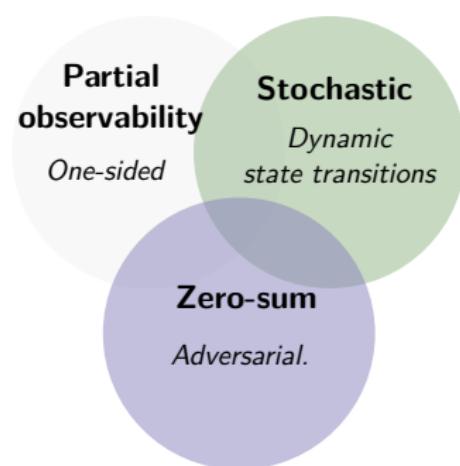
- ▶ Cybersecurity.
- ▶ Robotics.
- ▶ Learning theory.

► State-of-the-art

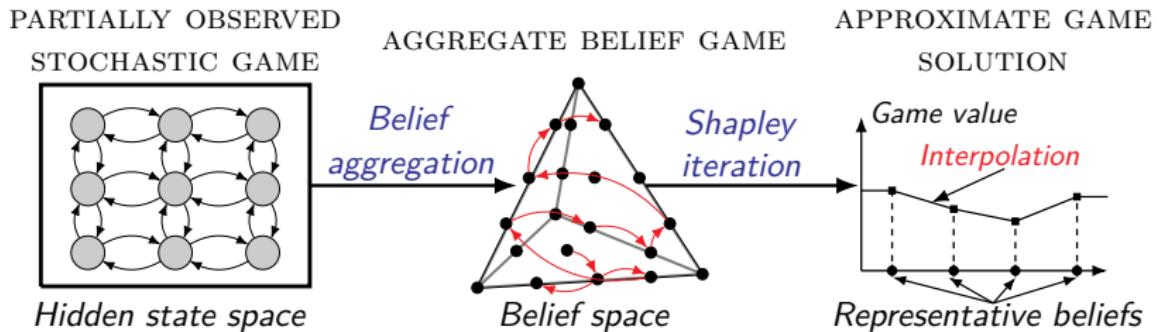
- ▶ Heuristic search value iteration (HSV).
- ▶ Deep reinforcement learning (e.g., NFSP).

► Limitations of Current Methods

- ▶ HSVI offers theoretical guarantees but is not scalable.
- ▶ Deep reinforcement learning is scalable but offers no theoretical guarantees.



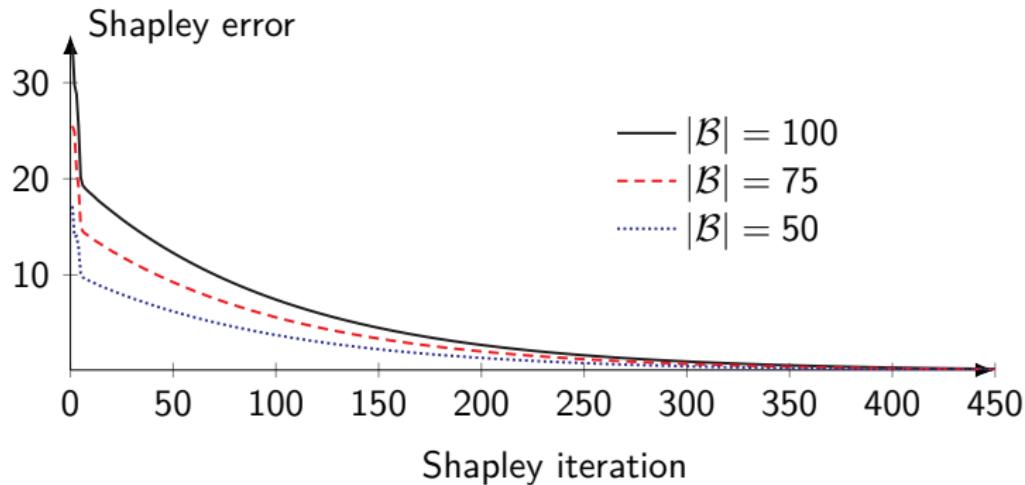
Our Method: Shapley Iteration with Aggregated Beliefs



- ▶ We convert the POSG into an **aggregate belief game**.
 - ▶ A (fully observed) stochastic game with finite belief space.
- ▶ We solve the aggregate belief game through **Shapley iteration**.
- ▶ We use the solution to the aggregate game to approximate an optimal solution to the original game via **interpolation**.

Proposition 1 (Convergence (Informal))

SAB converges for any POSG.



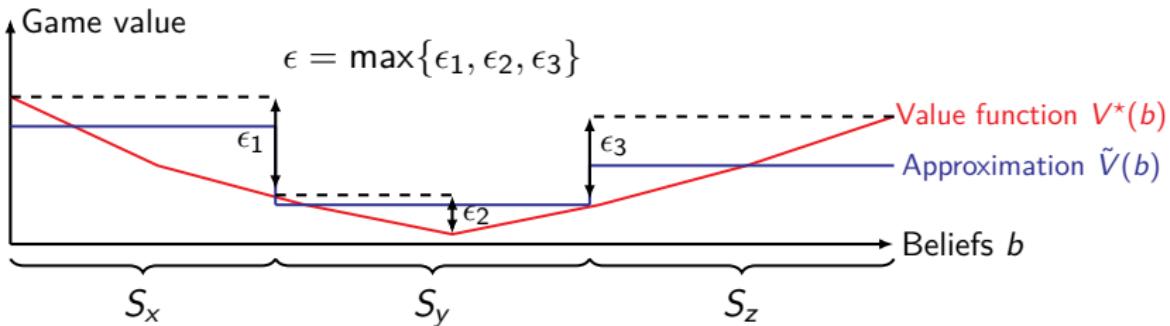
Proposition 2 (Approximation error bound (Informal))

The difference between the *estimated value function* \tilde{V} and the *true value function* V^* is bounded as

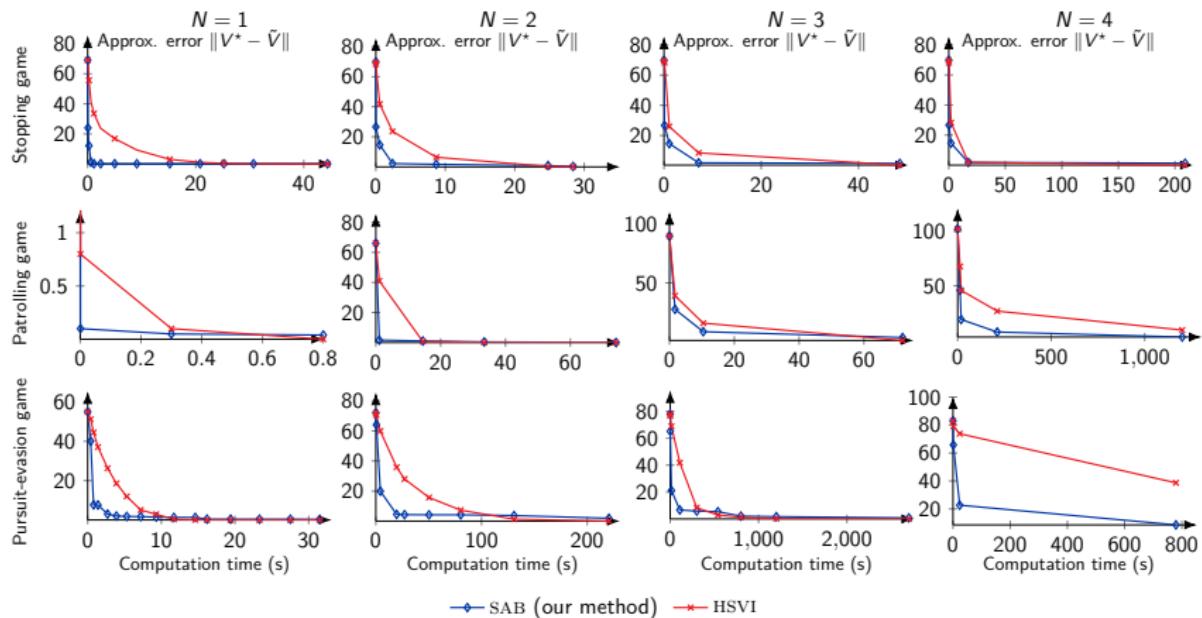
$$|\tilde{V}(b) - V^*(b)| \leq \frac{\epsilon}{1 - \gamma}, \quad \text{for all } b \in B,$$

where γ is the discount factor and ϵ is a finite constant defined by

$$\epsilon = \max_{x \in \mathcal{B}} \sup_{b, b' \in S_x} |V^*(b) - V^*(b')|, \quad S_x = \{b \mid b \in B, \phi_{bx} = 1\}.$$

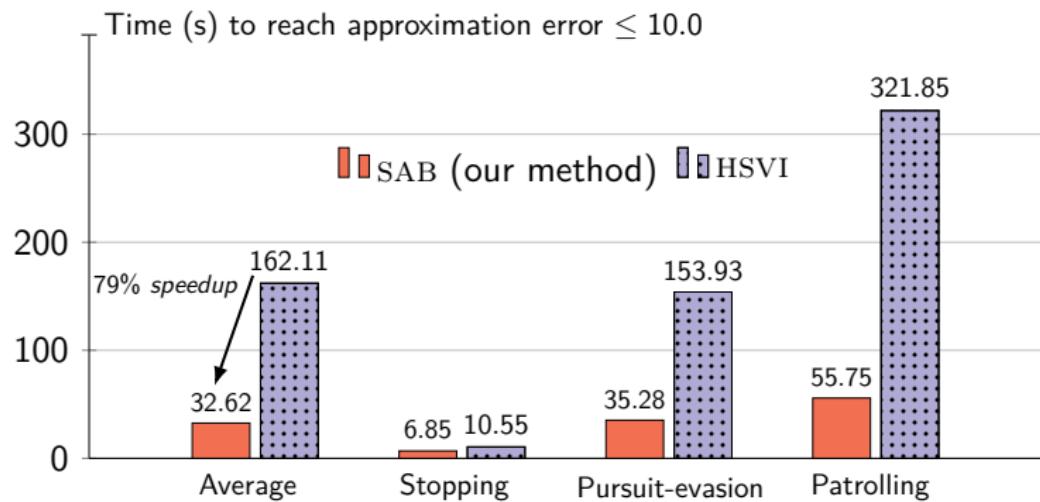


Comparison with Heuristic Search Value Iteration



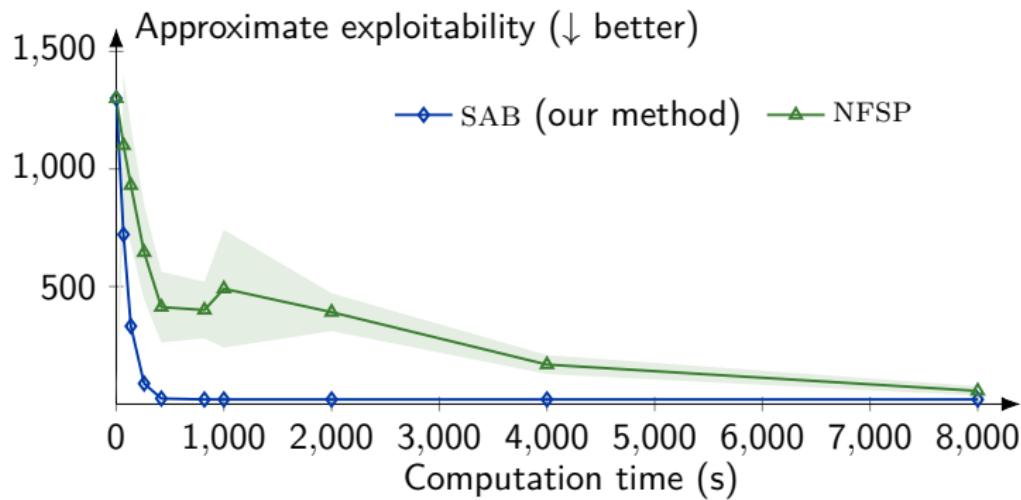
The parameter N controls the size of each game.

Computational Efficiency



Time to reach an approximation error of 10.0 or less across the evaluation games with size $N \in \{1, 2, 3, 4\}$.

Scalability



Comparison between SAB and a deep reinforcement learning method (NFSP) on a large game where HSVI is computationally intractable.

Conclusion

- ▶ We present SAB: **S**hapley iteration with **A**gggregated **B**eliefs.
 - ▶ A new method for approximately solving zero-sum POSGs.
 - ▶ Provides theoretical approximation guarantees.
 - ▶ Computationally scalable and flexible.
 - ▶ Outperforms HSVI and NFSP across three example POSGs.

