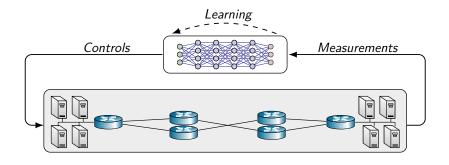
Visit to the City University of Hong Kong October 20, 2025

Dr. Kim Hammar kim.hammar@unimelb.edu.au

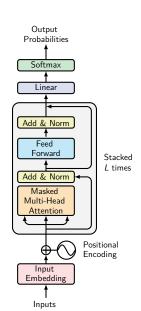
Next Generation of Security Systems



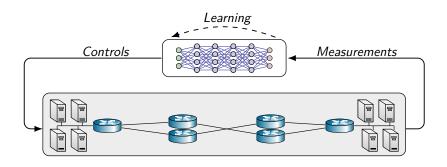
What role will **foundation models** play in the next generation of security systems?

Different Types of Foundation Models

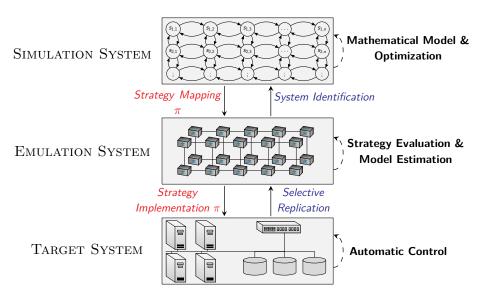
- ▶ Based on the transformer architecture.
- Trained on vast datasets.
- Billions of parameters.
- Examples:
 - Large language models (e.g., DeepSeek).
 - ► Time series models (e.g., Chronos).
 - ► Speech and audio models (e.g., Whisper).
 - ► Multi-modal models (e.g., Sora).

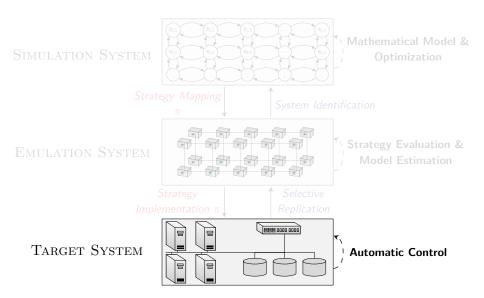


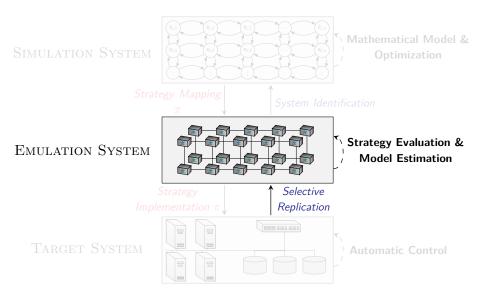
Autonomous Security Systems

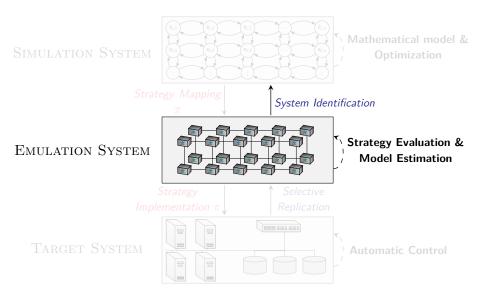


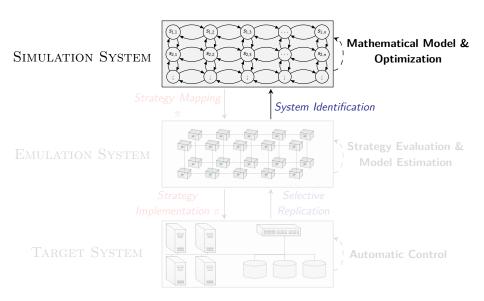
- Systems with **high automation** that adapt and learn.
- Responds to threats and incidents autonomously.
- Longstanding goal in network and systems engineering.

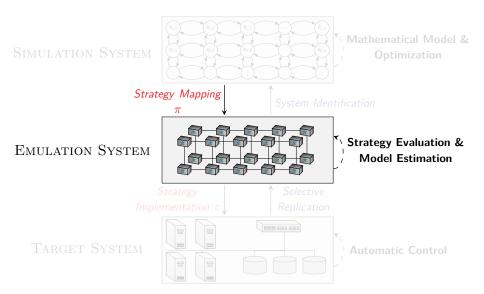


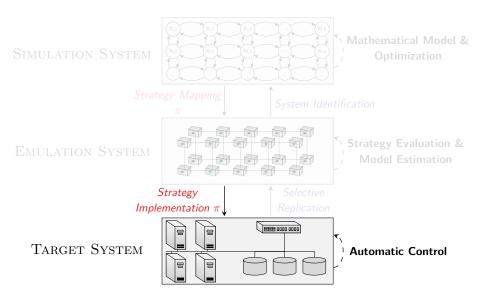


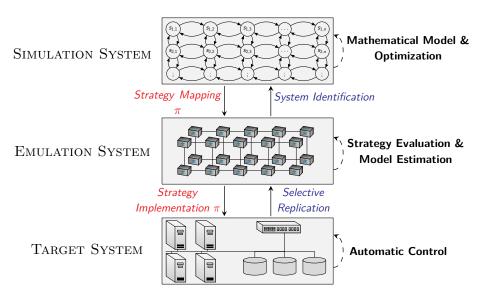


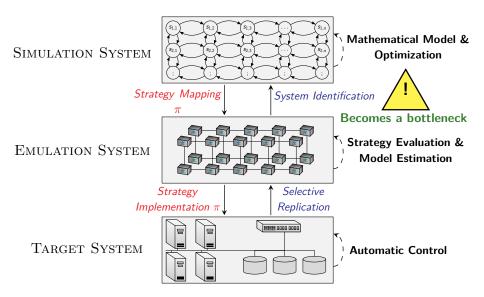


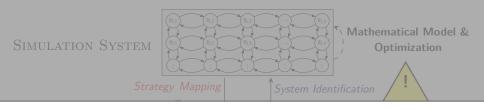




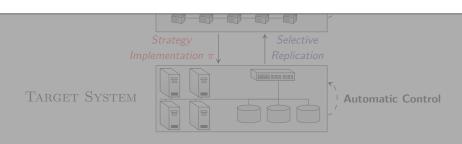








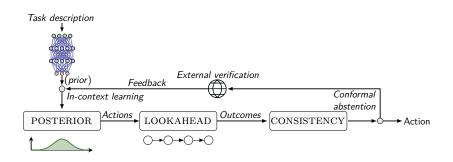
We use **foundation models** to mitigate the scalability challenge



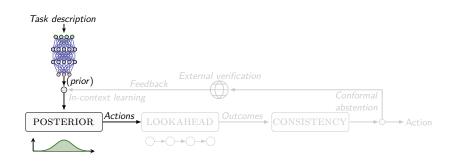
- Automated security with a foundation model.
 - Overview of our framework.
- ► Theoretical analysis.
 - Controlling the hallucination bound.
 - Regret bound.
- ► Case study: Incident Response.
 - Comparison with frontier models.

- Automated security with a foundation model
 - Overview of our framework.
- ► Theoretical analysis
 - Controlling the hallucination bound.
 - Regret bound.
- ► Case study: Incident Response
 - Comparison with frontier models.

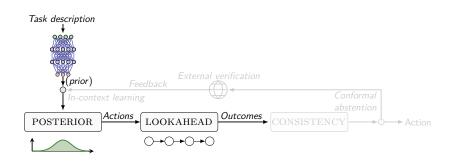
- Automated security with a foundation model
 - Overview of our framework.
- ► Theoretical analysis
 - Controlling the hallucination bound.
 - Regret bound.
- Case study: Incident Response
 - Comparison with frontier models.



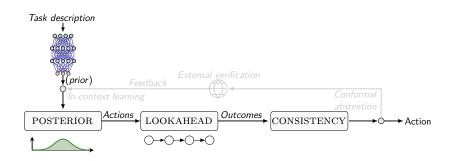
- ► We use the **model to generate candidate actions**.
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency
- Refine actions via in-context learning from feedback



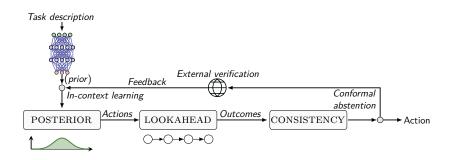
- We use the model to generate candidate actions.
- We evaluate actions through lookahead.
- ► We detect likely hallucinations by evaluating consistency
- Abstain from actions with low consistency
- Refine actions via in-context learning from feedback.



- We use the model to generate candidate actions.
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency.
- ► Refine actions via **in-context learning** from feedback



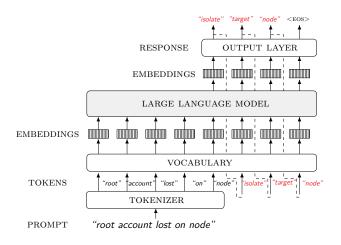
- We use the model to generate candidate actions.
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency
- ► Refine actions via **in-context learning** from feedback

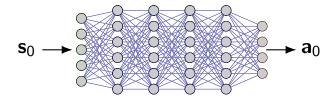


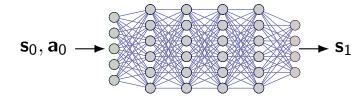
- We use the model to generate candidate actions.
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency.
- Refine actions via in-context learning from feedback.

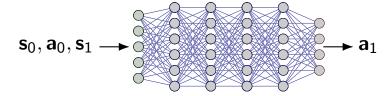
Generating Candidate Actions

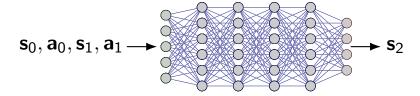
- Generate N candidate actions via auto-regressive sampling.
- Can think of the LLM as a base strategy.

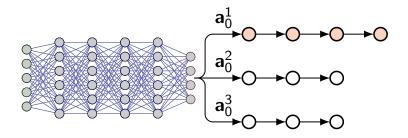








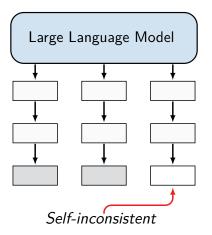




- For each candidate action \mathbf{a}_t^i , we use the LLM to predict the subsequent states and actions.
- We select the action with the best outcome.

Evaluating the **Consistency** of Actions

► We use **inconsistency** as an indication of hallucination.



Abstaining from Inconsistent Actions

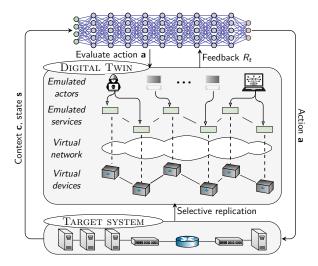
- Let $\lambda(\mathbf{a}) \in [0,1]$ be a function that evaluates the consistency of a given action \mathbf{a} .
- We use this function to abstain from actions with low consistency, as expressed by the following decision rule:

$$\rho_{\gamma}(\mathbf{a}_t) = \begin{cases} 1 \text{ (abstain)}, & \text{if } \lambda(\mathbf{a}_t) \leq \gamma, \\ 0 \text{ (not abstain)}, & \text{if } \lambda(\mathbf{a}_t) > \gamma, \end{cases}$$

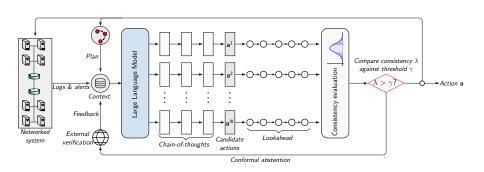
where $\gamma \in [0,1]$ is a consistency threshold.

In-Context Learning from Feedback

If an action does not meet the **consistency threshold**, we abstain from it, collect external feedback (e.g., from a digital twin), and select a new action through in-context learning.



Summary of Our Framework



- Automated security with a foundation model
 - Overview of our framework.
- ► Theoretical analysis
 - Controlling the hallucination bound.
 - Regret bound.
- ► Case study: Incident Response
 - Comparison with frontier models.

Conformal Abstention

Let $\{a_i\}_{i=1}^n$ be a calibration dataset of hallucinated actions.

Proposition 1

- Assume the actions in the calibration dataset $\{a_i\}_{i=1}^n$ are i.i.d.
- Let ã be an hallucinated action from the same distribution.
- Let $\kappa \in (0,1]$ be a desirable upper bound on the hallucination probability.

Define the threshold

$$\tilde{\gamma} = \inf \left\{ \gamma \; \left| \; \frac{\left| \left\{ i \; \middle| \; \lambda(\mathbf{a}_i) \leq \gamma \right\} \right|}{n} \geq \frac{\left\lceil (n+1)(1-\kappa) \right\rceil}{n} \right\},$$

where $\lceil \cdot \rceil$ is the ceiling function. We have

$$P(\text{not abstain from } \tilde{\mathbf{a}}) \leq \kappa.$$

Regret Bound for In-Context Learning

Proposition 2 (Informal)

- Let \mathcal{R}_K denote the **Bayesian regret**.
- Assume that the LLM's output distribution is aligned with the posterior given the context.
- Assume bandit feedback.

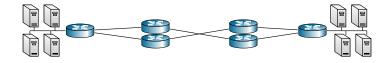
We have

$$\mathcal{R}_K \leq C\sqrt{|\mathcal{A}|K\ln K},$$

where C > 0 is a universal constant, A is the set of actions, and K is the number of ICL iterations.

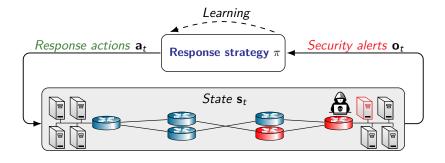
- Automated security with a foundation model
 - Overview of our framework.
- Theoretical analysis
 - Controlling the hallucination bound.
 - Regret bound.
- Case study: Incident Response
 - Comparison with frontier models.

Use Case: Incident Response



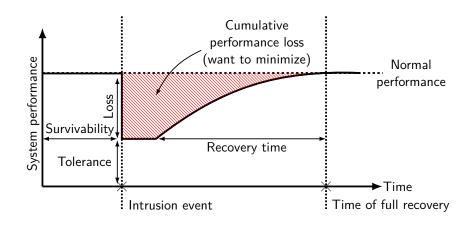
Use Case: Incident Response

Use Case: Incident Response



Problem: select actions $\mathbf{a}_0, \mathbf{a}_1, \ldots$ that drives the system to a secure and operational state after a cyberattack.

Response Objective



Challenges

Challenge 1: Partial observability.

The operator has to select response actions based on partial indicators of compromise, such as alerts and logs.

Challenges

Challenge 1: Partial observability.

The operator has to select response actions based on partial indicators of compromise, such as alerts and logs.

Challenge 2: Large and unstructured action space.

Actions have to be tailored to the specific incident.

Challenges

Challenge 1: Partial observability.

The operator has to select response actions based on partial indicators of compromise, such as alerts and logs.

Challenge 2: Large and unstructured action space.

Actions have to be tailored to the specific incident.

Challenge 3: Time-sensitive.

Delays in initiating the response can lead to costs.

Current Practice

- Incident response is managed by security experts.
- ▶ We have a global shortage of more than 4 million experts.
- Pressing need for new decision support systems!

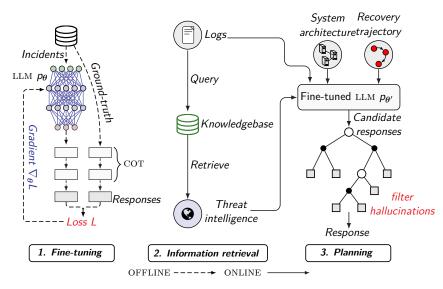
Current Practice

- Incident response is managed by security experts.
- ▶ We have a global shortage of more than 4 million experts.
- Pressing need for new decision support systems!

Current Practice

- Incident response is managed by security experts.
- ▶ We have a global shortage of more than 4 million experts.
- Pressing need for new decision support systems!

Experiment Setup

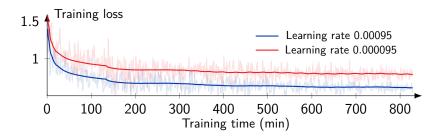


Instruction Fine-Tuning

- ► We fine-tune the DEEPSEEK-R1-14B LLM on a dataset of 68,000 incidents **x** and responses **y**.
- Minimize the cross-entropy loss:

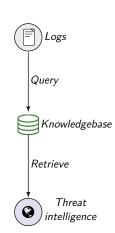
$$L = -\frac{1}{M} \sum_{i=1}^{M} \sum_{k=1}^{m_i} \ln p_{\theta} \left(\mathbf{y}_k^i \mid \mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_{k-1}^i \right),$$

where m_i is the length of the vector \mathbf{y}^i .



Retrieval-Augmented Generation (RAG)

- We use regular expressions to extract indicators of compromise (IOC) from logs.
 - e.g., IP addresses, vulnerability identifiers, etc.
- ➤ We use the IOCs to retrieve information about the incident from public threat intelligence APIs, e.g., OTX.
- We include the retrieved information in the context of the LLM.



Experimental Evaluation

We evaluate our system on 4 public datasets.

Dataset	System	Attacks
CTU-Malware-2014 CIC-IDS-2017 AIT-IDS-V2-2022 CSLE-IDS-2024	Windows xp sp2 servers Windows and Linux servers Linux and Windows servers Linux servers	Various malwares and ransomwares. Denial-of-service, web attacks, SQL injection, etc. Multi-stage attack with reconnaissance, cracking, and escalation. SambaCry, Shellshock, exploit of CVE-2015-1427, etc.

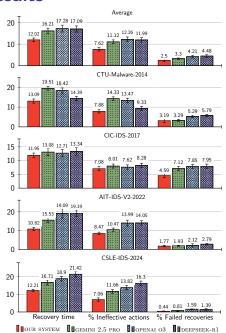
Distribution of MITRE ATT&CK tactics in the evaluation datasets.

Baselines

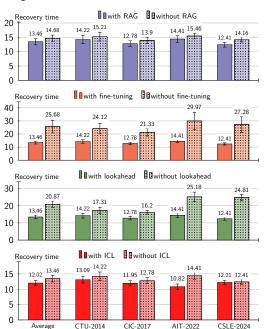
- ▶ We compare our system against frontier LLMs.
- ► Compared to the frontier models, our system is lightweight.

System	Number of parameters	Context window size
OUR SYSTEM	14 billion	128,000
DEEPSEEK-R1	671 billion	128,000
GEMINI 2.5 Pro	unknown (≥ 100 billion)	1 million
OPENAI O3	unknown (≥ 100 billion)	200,000

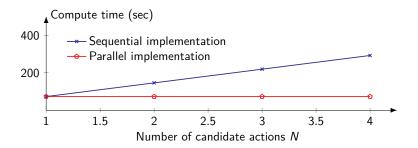
Evaluation Results



Ablation Study



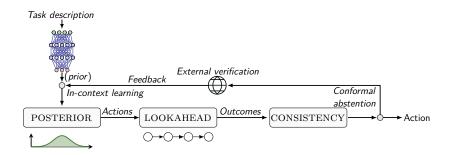
Scalability



- ► The lookahead optimization is computationally intensive since it requires making multiple inferences with the LLM.
- ▶ The computation can be parallelized across multiple GPU.

Conclusion

- Foundation models will play a key role in cybersecurity.
 - Effective at tackling the scalability challenge.
 - Remarkable knowledge management capabilities.
- We present a framework for security planning.
 - Allows to control the hallucination probability.
 - Significantly outperforms frontier LLMs.



References

- Paper
 - https://arxiv.org/abs/2508.05188
 - ► (A new paper will be released soon.)
- ► Code
 - ► https://github.com/Limmen/csle
- Demonstration
 - https://www.youtube.com/watch?v=XXo4Y6LCWk4
- Data & Weights
 - https://huggingface.co/datasets/kimhammar/ CSLE-IncidentResponse-V1
 - ► https: //huggingface.co/kimhammar/LLMIncidentResponse