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Next Generation of Security Systems

Learning

&
Controls ( o Measurements
C

ey alls
Treges— 83 2 63 &3 =
i\ & &

» What role will foundation models play in the next generation
of security systems?



Different Types of Foundation Models
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» Based on the transformer architecture.
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Autonomous Security Systems
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» Systems with high automation that adapt and learn.
P> Responds to threats and incidents autonomously.

» Longstanding goal in network and systems engineering.



Methodology for Building Autonomous Security Systems
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Methodology for Building Autonomous Security Systems
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Methodology for Building Autonomous Security Systems
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We use foundation models to mitigate the scalability challenge
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> We use the model to generate candidate actions.
> We evaluate actions through lookahead.

> We detect likely hallucinations by evaluating consistency.



Automated Security with a Foundation Model

Task description
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We use the model to generate candidate actions.

We evaluate actions through lookahead.

>
>
> We detect likely hallucinations by evaluating consistency.
» Abstain from actions with low consistency.

>

Refine actions via in-context learning from feedback.



Generating Candidate Actions

» Generate N candidate actions via auto-regressive sampling.
» Can think of the LLM as a base strategy.
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Lookahead Simulation with the LLM
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Lookahead Simulation with the LLM
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Lookahead Simulation with the LLM
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Lookahead Simulation with the LLM
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» For each candidate action ai, we use the LLM to predict the
subsequent states and actions.

» We select the action with the best outcome.



Evaluating the Consistency of Actions

> We use inconsistency as an indication of hallucination.

[ Large Language Model
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Abstaining from Inconsistent Actions

> Let A(a) € [0, 1] be a function that evaluates the consistency
of a given action a.

» We use this function to abstain from actions with low
consistency, as expressed by the following decision rule:

1 (abstain), if AM(a¢) <7,
pw(at) = . .
0 (not abstain), if A(a¢) > 7,

where v € [0, 1] is a consistency threshold.



In-Context Learning from Feedback
If an action does not meet the consistency threshold, we abstain
from it, collect external feedback (e.g., from a digital twin), and
select a new action through in-context learning.
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Summary of Our Framework
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Conformal Abstention

Let {a;}7_; be a calibration dataset of hallucinated actions.
Proposition 1

» Assume the actions in the calibration dataset {a;}"_; are i.i.d.
> Let @ be an hallucinated action from the same distribution.

» Let k € (0,1] be a desirable upper bound on the hallucination
probability.
Define the threshold

jmint o | LA S 1, o D))

n n

where [-] is the ceiling function. We have

P (not abstain from &) < k.



Regret Bound for In-Context Learning

Proposition 2 (Informal)

> Let Rk denote the Bayesian regret.

» Assume that the LLM'’s output distribution is aligned with the
posterior given the context.

» Assume bandit feedback.

We have
Rk < G/|AKInK,

where C > 0 is a universal constant, A is the set of actions, and K
is the number of ICL iterations.
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» Overview of our framework.

> Theoretical analysis

» Controlling the hallucination bound.
»  Regret bound.

» Case study: Incident Response
» Comparison with frontier models.



Use Case: Incident Response
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Use Case: Incident Response
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Use Case: Incident Response
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» Problem: select actions ag, ai, ... that drives the system to a
secure and operational state after a cyberattack.



Response Objective
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Challenges

Challenge 1: Partial observability.}

The operator has to select response actions based on par-
tial indicators of compromise, such as alerts and logs.
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Challenges

,—(Challenge 1: Partial observability.} \

The operator has to select response actions based on par-
tial indicators of compromise, such as alerts and logs.

f—(ChaIIenge 2: Large and unstructured action space.)—

Actions have to be tailored to the specific incident.

Challenge 3: Time—sensitive.} \

Delays in initiating the response can lead to costs.




Current Practice

» Incident response is managed by security experts.
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Current Practice

» Incident response is managed by security experts.
» We have a global shortage of more than 4 million experts.

P Pressing need for new decision support systems!



Experiment Setup
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Instruction Fine-Tuning

> We fine-tune the DEEPSEEK-R1-14B LLM on a dataset of
68,000 incidents x and responses y.

» Minimize the cross-entropy loss:

I\/Im,-

1 i Lo o '
Lz—ﬁzzlnpe (y;<|xlvyll7""y;‘*1)’

i=1 k=1

where mj is the length of the vector y'.

15 Training loss

—— Learning rate 0.00095
1 —— Learning rate 0.000095
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Retrieval-Augmented Generation (RAG)

» We use regular expressions to extract
indicators of compromise (I0C) from logs.

» e.g., IP addresses, vulnerability
identifiers, etc.

» We use the IOCs to retrieve information
about the incident from public threat
intelligence APls, e.g., OTX.

» We include the retrieved information in
the context of the LLM.

Retrieve

Threat
@ intelligence




Experimental Evaluation

P> We evaluate our system on 4 public datasets.

Dataset System Attacks
CTU-Malware-2014  Windows xp sp2 servers Various malwares and ransomwares.
CIC-IDS-2017 Windows and Linux servers Denial-of-service, web attacks, SQL injection, etc.
AIT-IDS-V2-2022 Linux and Windows servers  Multi-stage attack with reconnaissance, cracking, and escalation.
CSLE-IDS-2024 Linux servers SambaCry, Shellshock, exploit of CVE-2015-1427, etc.
IMPACT | 5 ]
INITIAL ACCESS | 4 ]
COMMAND AND CONTROL] 4 ]
EXECUTION | 3 ]
COLLECTION | B ]
LATERAL MOVEMENT | 3 ]
PRIVILEGE ESCALATION[______2 1]
EXFILTRATION
RECONNAISSANCE

Distribution of MITRE ATT&CK tactics in the evaluation datasets.



Baselines

» We compare our system against frontier LLMs.

» Compared to the frontier models, our system is lightweight.

System Number of parameters Context window size
OUR SYSTEM 14 billion 128,000
DEEPSEEK-R1 671 billion 128,000

GEMINI 2.5 PRO unknown (> 100 billion) 1 million
OPENAI 03 unknown (> 100 billion) 200, 000




Evaluation Results
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Ablation Study
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Scalability

, Compute time (sec)

y
400 —— Sequential implementation
—e— Parallel implementation
200
1 15 2 2.5 3 35 4

Number of candidate actions NV

» The lookahead optimization is computationally intensive since
it requires making multiple inferences with the LLM.

» The computation can be parallelized across multiple GPU.



Conclusion

» Foundation models will play a key role in cybersecurity.

» Effective at tackling the scalability challenge.
» Remarkable knowledge management capabilities.

> We present a framework for security planning.

» Allows to control the hallucination probability.
» Significantly outperforms frontier LLMs.
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