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Next Generation of Security Systems

MeasurementsControls

Learning

▶ What role will foundation models play in the next generation
of security systems?
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Different Types of Foundation Models

▶ Based on the transformer architecture.

▶ Trained on vast datasets.

▶ Billions of parameters.

▶ Examples:
▶ Large language models (e.g., DeepSeek).
▶ Time series models (e.g., Chronos).
▶ Speech and audio models (e.g., Whisper).
▶ Multi-modal models (e.g., Sora).
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Autonomous Security Systems

MeasurementsControls

Learning

▶ Systems with high automation that adapt and learn.
▶ Responds to threats and incidents autonomously.
▶ Longstanding goal in network and systems engineering.
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Methodology for Building Autonomous Security Systems
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We use foundation models to mitigate the scalability challenge
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Outline

▶ Automated security with a foundation model.
▶ Overview of our framework.

▶ Theoretical analysis.
▶ Controlling the hallucination bound.
▶ Regret bound.

▶ Case study: Incident Response.
▶ Comparison with frontier models.



5/29

Outline

▶ Automated security with a foundation model
▶ Overview of our framework.

▶ Theoretical analysis
▶ Controlling the hallucination bound.
▶ Regret bound.

▶ Case study: Incident Response
▶ Comparison with frontier models.



5/29

Outline

▶ Automated security with a foundation model
▶ Overview of our framework.

▶ Theoretical analysis
▶ Controlling the hallucination bound.
▶ Regret bound.

▶ Case study: Incident Response
▶ Comparison with frontier models.



6/29

Automated Security with a Foundation Model
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▶ We detect likely hallucinations by evaluating consistency.
▶ Abstain from actions with low consistency.
▶ Refine actions via in-context learning from feedback.
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Generating Candidate Actions
▶ Generate N candidate actions via auto-regressive sampling.
▶ Can think of the LLM as a base strategy.

large language model

output layer

vocabulary

tokenizer

“root account lost on node”

“root” “account” “lost” “on” “node” “isolate” “target” “node”

“isolate” “target” “node” <eos>

prompt

embeddings

tokens

embeddings

response
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Lookahead Simulation with the LLM

a0s0
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Lookahead Simulation with the LLM

a2
0

a1
0

a3
0

▶ For each candidate action ai
t , we use the LLM to predict the

subsequent states and actions.
▶ We select the action with the best outcome.
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Evaluating the Consistency of Actions
▶ We use inconsistency as an indication of hallucination.

Large Language Model

Self-inconsistent
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Abstaining from Inconsistent Actions
▶ Let λ(a) ∈ [0, 1] be a function that evaluates the consistency

of a given action a.
▶ We use this function to abstain from actions with low

consistency, as expressed by the following decision rule:

ργ(at) =
{

1 (abstain), if λ(at) ≤ γ,

0 (not abstain), if λ(at) > γ,

where γ ∈ [0, 1] is a consistency threshold.
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In-Context Learning from Feedback
If an action does not meet the consistency threshold, we abstain
from it, collect external feedback (e.g., from a digital twin), and
select a new action through in-context learning.
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Summary of Our Framework
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Conformal Abstention
Let {ai}n

i=1 be a calibration dataset of hallucinated actions.

Proposition 1
▶ Assume the actions in the calibration dataset {ai}n

i=1 are i.i.d.
▶ Let ã be an hallucinated action from the same distribution.
▶ Let κ ∈ (0, 1] be a desirable upper bound on the hallucination

probability.
Define the threshold

γ̃ = inf
{

γ

∣∣∣∣ |{i | λ(ai) ≤ γ}|
n ≥ ⌈(n + 1)(1 − κ)⌉

n

}
,

where ⌈·⌉ is the ceiling function. We have

P (not abstain from ã) ≤ κ.



15/29

Regret Bound for In-Context Learning

Proposition 2 (Informal)
▶ Let RK denote the Bayesian regret.
▶ Assume that the LLM’s output distribution is aligned with the

posterior given the context.
▶ Assume bandit feedback.

We have

RK ≤ C
√

|A|K ln K ,

where C > 0 is a universal constant, A is the set of actions, and K
is the number of ICL iterations.
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Use Case: Incident Response
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Use Case: Incident Response

Security alerts otResponse actions at

State st

Learning

Response strategy π

▶ Problem: select actions a0, a1, . . . that drives the system to a
secure and operational state after a cyberattack.
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Response Objective

Intrusion event Time of full recovery
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Challenges

The operator has to select response actions based on par-
tial indicators of compromise, such as alerts and logs.

Challenge 1: Partial observability.
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Challenges

The operator has to select response actions based on par-
tial indicators of compromise, such as alerts and logs.

Challenge 1: Partial observability.

Actions have to be tailored to the specific incident.

Challenge 2: Large and unstructured action space.

Delays in initiating the response can lead to costs.

Challenge 3: Time-sensitive.
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Current Practice

▶ Incident response is managed by security experts.
▶ We have a global shortage of more than 4 million experts.
▶ Pressing need for new decision support systems!
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Experiment Setup
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Instruction Fine-Tuning
▶ We fine-tune the deepseek-r1-14b LLM on a dataset of

68, 000 incidents x and responses y.
▶ Minimize the cross-entropy loss:

L = − 1
M

M∑
i=1

mi∑
k=1

ln pθ

(
yi

k | xi , yi
1, . . . , yi

k−1
)

,

where mi is the length of the vector yi .

0 100 200 300 400 500 600 700 800

1

1.5
Learning rate 0.00095
Learning rate 0.000095

Training time (min)

Training loss
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Retrieval-Augmented Generation (RAG)

▶ We use regular expressions to extract
indicators of compromise (IOC) from logs.

▶ e.g., IP addresses, vulnerability
identifiers, etc.

▶ We use the IOCs to retrieve information
about the incident from public threat
intelligence APIs, e.g., otx.

▶ We include the retrieved information in
the context of the LLM. �

Logs

Knowledgebase

Threat
intelligence

Query

Retrieve
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Experimental Evaluation
▶ We evaluate our system on 4 public datasets.

Dataset System Attacks
CTU-Malware-2014 Windows xp sp2 servers Various malwares and ransomwares.
CIC-IDS-2017 Windows and Linux servers Denial-of-service, web attacks, SQL injection, etc.
AIT-IDS-V2-2022 Linux and Windows servers Multi-stage attack with reconnaissance, cracking, and escalation.
CSLE-IDS-2024 Linux servers SambaCry, Shellshock, exploit of CVE-2015-1427, etc.

impact 5
4initial access
4command and control

3execution
3collection
3lateral movement

2privilege escalation
2exfiltration

1reconnaissance

Distribution of MITRE ATT&CK tactics in the evaluation datasets.
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Baselines

▶ We compare our system against frontier LLMs.
▶ Compared to the frontier models, our system is lightweight.

System Number of parameters Context window size
our system 14 billion 128, 000
deepseek-r1 671 billion 128, 000
gemini 2.5 pro unknown (≥ 100 billion) 1 million
openai o3 unknown (≥ 100 billion) 200, 000
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Evaluation Results
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Ablation Study
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Scalability

1 1.5 2 2.5 3 3.5 4

200

400 Sequential implementation
Parallel implementation

Compute time (sec)

Number of candidate actions N

▶ The lookahead optimization is computationally intensive since
it requires making multiple inferences with the LLM.

▶ The computation can be parallelized across multiple GPU.
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Conclusion
▶ Foundation models will play a key role in cybersecurity.

▶ Effective at tackling the scalability challenge.
▶ Remarkable knowledge management capabilities.

▶ We present a framework for security planning.
▶ Allows to control the hallucination probability.
▶ Significantly outperforms frontier LLMs.
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