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How to automate security response operations in an optimal way?
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IT systems facilitate

Critical infrastructures

e.g., power and transport
infrastructures.

Sensors and
actuators

/Flight control
computer

CHEREHE

Cyber-physical systems

Financial ecosystems

e.g., flight control systems,
train signaling systems,
healthcare systems, etc.

e.g., banking systems,
payment processing systems,
Swish, etc.



Clients

Gateway

===y

INE== |

N

Z

Qe

N

.E

Qe

.E

N=To

INTE T N

[ <]

N
e




Clients

Attacker
A\
O
(2]

Gateway

INE== |

e

ol

N

ESES




=r=l=r=

Clients

N

Gateway %

o

Emmm

NE= T e

NG

.E

.E

.E

.E

.E

.E

.E

.E

Defender



Examples of Response Actions

Flow control Old path---
By redirecting traffic, the defender

can isolate malicious behavior.

', New path—>
R

Server

Access control
By adjusting resource permissions,
the defender can prevent the attacker
from compromising critical assets. ~ |[PFlez

N
.E Revoke certificates
) “~~..  Defender

Client interface

)

Replication control i Request
Replication can ensure that multiple Replicated system .
replicas of services remain available > 5. Jﬁ §
even when some are compromised. J = ”

[ Consensus protocol J




Thesis Contributions - Optimal Security Response

> My thesis advances optimal security response through
theoretical foundations, system design, and
experimental validation.

Systems Theory
engineering
Theorems 1.1, 2.1,
Open-source 4.3, 4.5, 5.1, 6.4.
platform™

Experimentation

Algorithms 1.1, 2.1,
3.1,4.1, 4.2 5.1,
6.1

*Kim Hammar. Cyber Security Learning Environment (CSLE). Documentation: https://limmen.dev/csle/,
traces: https://github.com/Limmen/csle/releases/tag/v0.4.0, source code:
https://github.com/Limmen/csle, video demonstration: https://www.youtube.com/watch?v=iE2KPmt Is2A&
2023. URL: https://limmen.dev/csle/.


https://limmen.dev/csle/
https://github.com/Limmen/csle/releases/tag/v0.4.0
https://github.com/Limmen/csle
https://www.youtube.com/watch?v=iE2KPmtIs2A&
https://limmen.dev/csle/

Methodology for Optimal Security Response
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WHEN IS THE

Case StUdies OPTIMAL TIME

TO RESPOND?

OPTIMAL
STOPPING
o
HOW TO OPTIMALLY RV _ PAPER 1
RESPOND UNDER : Optimal
UNCERTAINTY? security
response
; RELIABILITY
PAPER 5 SISO
PAPER 4t

How TO OPTIMALLY
CONTROL A SYSTEM
UNDER ATTACK?

*Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: |EEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333-2348. DOI: 10.1109/TNSM.2022.3176781.

TKim Hammar and Rolf Stadler. “Intrusion Tolerance for Networked Systems through Two-Level Feedback
Control”. In: 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)
2024, pp. 338-352. DOI: 10.1109/DSN58291.2024.00042.

*Kim Hammar et al. Automated Security Response through Online Learning with Adaptive Conjectures.
https://arxiv.org/abs/2402.12499. To appear in IEEE Transactions on Information Forensics and Security


https://doi.org/10.1109/TNSM.2022.3176781
https://doi.org/10.1109/DSN58291.2024.00042
https://arxiv.org/abs/2402.12499
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When is the Optimal time to Respond?

» The attacker seeks to intrude on the infrastructure.

» One response action, e.g., block the gateway.

Response times that

Early response times
affect the intrusion

time



Optimal Stopping

» Observe the system through the stochastic process (o:)._;.

P> 0 is the number of security alerts at time t.
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» Observe the system through the stochastic process (o:)._;.

P> 0 is the number of security alerts at time t.

Ot
200

A\

100 120 140 160 180

150
100
"M
//\/\41 1 t f t t
20 40 60 80

200

t



Optimal Stopping

» Observe the system through the stochastic process (o:)._;.
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Optimal Stopping

» Observe the system through the stochastic process (o:)._;.

P> 0 is the number of security alerts at time t.

When to stop?

Ot
200

150




Optimal Stopping Time

» Find the optimal stopping time 7* € arg max_E[J(7)].

Lot M

|
|
*

T



Dynamical System

Healthy Compromised




Challenge: System identification.}

How to model the observation distribution o ~ z(- | s¢)?

Inputs IT Infrastructure Observations

Attacks
& responses

250



System ldentification

> Measurement data from the digital twin:

Exploit of CVE-2015-5602 Exploit of GvE-2016-10033
il il
It

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Number of security alerts o; Number of security alerts o;

I network intrusion ZUZ normal operation

» Estimate o; ~ z(- | s;) with the empirical distribution Z.
» z —2° z (Glivenko-Cantelli theorem).



Belief State

» The defender can compute the belief Belief
bté]P)[St:C|b]_,O]_,Oz,...Ot]. O
O

Defender



Belief State

» The defender can compute the belief

bt éIl;D[St =C ’ b1,01,02,...01_-].

> Stopping strategy:
7(b) : [0,1] — {Stop, Continue}.

Belief

Defender



Threshold Structure of an Optimal strategy

Theorem

There exists an optimal defender strategy of the form:
7*(b) = Stop <= b > o, where o* € [0, 1].

The stopping set is . = [a*,1].

|

|

[ |
0 a*
o

\—

~

belief space B = [0, 1]

\4



Optimal Multiple Stopping

» Suppose the defender can take L > 1 response actions.

» Find the optimal stopping times 7/, 7/ _{,...,T7.

} ‘ T
|
* *
T TrL-1 TI—2 oo

st bl N,



Threshold Structure of an Optimal Strategy
Theorem

» Stopping sets are nested .#)_1 C &) for | =2, ... L.

» There exists an optimal defender strategy of the form

7y (b) = Stop <= b > af,

I=1,...,L
where af € [0, 1] is decreasing in |.
L
A
7
- - N
%
A
I I —F —~
0 af a3 o 1



Testbed at KTH
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Evaluation Scenario

» IT Infrastructure

» 31 virtual servers (containers).
» 11 vulnerabilities: ¢cvE-2010-0426,
CVE-2015-3306, etc.

> Attacker
» 3 types of attackers.

» Reconnaissance and exploits.

» Defender

» Response action: block the gateway.

» Threshold response strategy.

Attacker Clients
A

=
Defender




Evaluation Results

Performance vs attacker 1 Performance vs attacker 2 Performance vs attacker 3

T T T
0 20 40 60 0 20 40 60 0 20 40 60

compute time (min) compute time (min) compute time (min)
—e— simulation —#— emulation (digital twin) --- optimal

QPerformance on the simulator transfers to the digital twin.



Narrowing the Gap between Theory and Practice

SIMULATION SYSTEM

OEOWOWO
e
SBOWSO)

S0

"\ Mathematical Model &
,‘ Optimization

53

Strategy I\/Iappingl

EMULATION SYSTEM

TS ystem Identification

™\ Strategy Evaluation &
; Model Estimation

53

Strategy

Implementation

TARGET SYSTEM

l

Selective

R —

Replication

S55 0000 0000

" Automated & Optimal
/ Response Strategy




Narrowing the Gap between Theory and Practice

Performance vs attacker 1 Performance vs attacker 2 Performance vs attacker 3

T T T T T T T T T T T
0 20 40 60 0 20 40 60 0 20 40 60

compute time (min) compute time (min) compute time (min)
—e— simulation —%— emulation (digital twin) —-- optimal

VPerformance on the simulator transfers to the digital twin.

What’s new here?}

First demonstration of optimal security response on an
infrastructure with a practical configuration (31 servers).




Comparison with Prior Work
PRACTICAL
APPLICABILITY

A

Goal
e

THEORETICAL
OPTIMALITY

Limitation of prior work.}

Current response systems are based on heuristics. Optimal
solutions have only been validated in simulation.
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Intrusion Tolerance

Consider a distributed system that provides a replicated service.
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Intrusion Tolerance

Consider a distributed system that provides a replicated service.
The system should tolerate intrusions.

Attcker Clients
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Intrusion Tolerance

A Cumulative
performance loss
§ (want to minimize) Normal
£ L performance
E :
L
£
[
o
S
2 : Recovery time
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»| Tolerance|: :
& »Time

i Intrusion event ¢ Time of full recovery



Building Blocks of An Intrusion-Tolerant System

[ Client interface J
l Request

1. Intrusion-tolerant consensus protocol

Replicated system

(] j@)
Response

A quorum needs to reach agreement
to tolerate f compromised replicas.

2. Replication strategy

o000
N oo

Cost-reliability trade-off.

20 40 60 80 100
—o— 25 replicas —— 50 replicas —8— 100 replicas

Healthy Compromised
Compromise

@ Recovery e
rash I Crash

Crashed

3. Recovery strategy

Compromises will occur as t — oo.



Prior Work on Intrusion-Tolerant Systems

The Rampart Toolkit for Building
High-Integrity Services

Michael K. Reiter

AT&T Bell Laboratories, Holmdel, New Jersey, USA

reiter@research.att.com

Abstract. Rampart is a toolkit of protocols to facilitate .
ment of high-integrity services, i.e., distributed s PUbIIShed 1995

availability and correctness despite the malicio
component servers by an aLLalcker. At the Icorelo _ Fixed number Of replicas
tocols that solve several basic problems in dist

cluding asynchronous group membership, reliab] - No recoveries

agreement ), and atomic multicast. Using these p
ports the development of high-integrity services v|
machine replication, and also extends this technigire=wrrrrrewpproacT
to server output voting. In this paper we give a brief overview of Ram-
part, focusing primarily on its protocol architecture. We also sketch its
performance in our prototype implementation and ongoing work.




Prior Work on Intrusion-Tolerant Systems

The Rampart Toolkit for Building
High-Integrity Services

Michael K. Reiter

ATAT Bl Laborstories, Holmdel, Now Joriry, USA

Abstract. Rampat i a toolkis of protocols 10 failate the develop-

et f Righnteaity servics .5, ditrbued sesvices that rsain sheir
wlabil and correciness despie the malicons penetration of some
componont serves by an atacker. A: the i a0

B Solve sveral basie problems i @stributed compatin

cluding avacheo sership, relable multicas: (Byzaniine
sereemet ], and atomic mlicas. Using these protorobs, Ratpart -
ot the developaat ot s ke of st
machine rplcasion, and s extends his Lsbie with 4 0o approsch
o serve antput voting. n this pap 5 ref xersien of Ran
pist, forusing primasiy on s protocol sechiertare, W it
Berfbmmance in ou prototype fplesuestation and ongoing work.

The SecureRing Protocols for Securing Group Communication*

Kim Potter Kihlstrom, L. E. Moser, P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106
kimk@alph.ece.ucsb.edu, moser@ece.ucsb.edu, pmms@ece.ucsb.edu

Abstract Published 1998 -

The SecureRing group communication protocols pro
reliable ordered message delivery and group members
services despite Byzantine faults such as might be cause
modifications o the programs of a group member follo
illicit access to, o capture of. a group member.

- Fixed number of replicas feo
- No recoveries hince
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The Rampart Toolkit for Building
High-Integrity Services

Michinel K. Relter
ATAT Bl Laboruories, Holmdsl, New Jersey, USA

The SecureRing Protocols for Securing Group Communication’

Kim Poter Kiblstrom, L. E. Moser, P. M. Melliar-Smith
‘Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106

Abstract processors within an asynchronous disebuted syst
The SecureRing group communication protocos provide  pose a consistent total order on messages, and 1
reliabe ordered

modificatons o theprograms ofa group memberfollowing  Byzanine faus s to optmize the pecformance
illicit access t, o capture of, @ group member. The mal (faultfee) operation and o pay a performance

Practical Byzantine Fault Tolerance
and Proactive Recovery

MIGUEL CASTRO
Microsoft Research
and

BARBARA LISKOV

MIT Laboratory for Computer Science

Our growing reliance on online servie,
tems that. provide carrect service wi

malicious attacks are a major cause

ior, that is, Byzantine faults, This arti
used to build highly available systems
to implement real services: it performy
Internet, it incorporates mechanisms

replicas proactively. The recovery

Published 2002

- Fixed number of replicas
- Periodic recoveries
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Department of Electrical and Computer Engineering

University o California, Santa Barbara, CA 93106 . . . e

L e e A Qualitative Analysis of the Intrusion-Tolerance Capabilities of the

MAFTIA Architecture
Abstract rocesor iinn sylonas by
it st o e o2 ey et e e operin e o ot Robert Stroud, [an Welch', John Warne, Peter Ryan,
Practical Byzantine Fault Tolerance School of Computing Science, University of Newcastle upon Tune, UK
and Proactive Recovery {R.JStroud, J P.Warne, Peter.Ryan}@ncl.ac.uk
Tan. Welch@nres.v "
N pvsrh Published 2004
fe—
T ooy forComputerScionco Abstract 5 .
- Fixed number of replicas
e e o B e e ot MAFTIA was a three-vear European reseal 8- .
g s e i project that explored the wse of fmivileray - Periodic recoveries

b e techniques to build intrusion-tolerant sysiems.
I d MAFTIA architecture embodies a mumber of key desi
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An architecture for adaptive
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Deparment o Elctical and Coputer Engineerng applications
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‘The SecureRing Protocols for Securing Group Communication®

Partha Pal'* and Paul Rubel', Michael Atighetehi®, Franklin Webber!,

processors within an asynchronous distibuted ssi William H. Sanders?, Mouna SeriZ, HariGovind Ramasamy?, James Lyons?,
Pirkpiriie f s dog e sonsind iyl eotriopmieteorivtviaian el Tod Courtney?, Adnan AgbariaZ, Michel Cukier®, Jeanna Gossett?, Idit Keidar®
T kst of e o o gy et Tt e sprion s o o ' BBN Technologies, Cambridge, Massachusells. {ppal, prubel, matighet, fuebber} @bbr.com
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MIT Laboratory for Computer Science

- Adaptive replication based on heuristics
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MAFTIA Architecture

Periodic recoveries

Robert Stroud, Lan Welch', John Wame, Peter Ryan,
School of Compuiing Science. University of Newcastle upon Tyne. UK
(R Stroud, . P-Warne. Peter-Ryan) @ncl.ac.uk
Lan Welch@mes.vaw.ac.nz
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Can we do better by applying our methodology for optimal security response?




The TOLERANCE Architecture

Two-level recovery and replication control with feedback.

TOLERANCE
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Definition (Correct service)

The system provides correct service if the healthy replicas satisfy
the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)

Each replica executes the same request sequence. (Safety)



Proposition (Correctness of TOLERANCE)

A system that implements the TOLERANCE architecture provides
correct service if
Network links are authenticated.

At most f nodes are compromised or crashed simultaneously.
Ny > 2f + 1.

The system is partially synchronous.



Intrusion Tolerance as a Two-Level Game
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> We formulate intrusion tolerance as a two-level game.
» The local game models intrusion recovery.
» The global game models replication control.



The Benefit of Optimal Recovery

Operational cost
(recovery and attack costs)
A

0.4 &

Benefit of optimal recovery

0.3 +

0.2 + %

>
>

29 4 6 8 10 12 14 16 18 20

Dx1,( no intrusion || intrusion )

—o— Strategy based on my methodology === Periodic strategy

Key insight

Optimal recovery can significantly reduce operational cost
given that an intrusion detection model is available.




The Benefit of Optimal Replication

Service availability

N Benefit of optimal replication control

|
y

1

0.5

>t

200 400 600 800 1,000
—— My methodology - - - Fixed replication strategy with 100 replicas

Key insight

Optimal replication can guarantee a high service avail-
ability in expectation. The benefit of optimal replication
is mainly prominent for long-running systems.




Experimental Evaluation
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Experiment Setup - Emulated Intrusions

Replica ID

Intrusion steps

= O 00 ~NO 1D WN

TCP SYN scan, FTP brute force

TCP SYN scan, SSH brute force

TCP SYN scan, TELNET brute force

ICMP scan, exploit of CVE-2017-7494

ICMP scan, exploit of CVE-2014-6271

ICMP scan, exploit of CWE-89 on DVWA

ICMP scan, exploit of CcVE-2015-3306

ICMP scan, exploit of CVE-2016-10033

ICMP scan, SSH brute force, exploit of CVE-2010-0426
ICMP scan, SSH brute force, exploit of CVE-2015-5602




Comparison with State-of-the-art Systems
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Comparison between the control strategies produced by my methodology
and the baselines; AR is the maximum allowed time-to-recovery; Ny is
the number of initial nodes.



Comparison with State-of-the-art Systems
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What’s new here?)

First intrusion-tolerant system that ensures a chosen level
of service availability while minimizing operational cost.
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Challenge: IT systems are complex.
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» [t is not realistic that any model will capture all the details.

» —> We have to work with approximate models.

» —> model misspecification.

» How does misspecification affect optimality and convergence?



Prior Work

> Assumes a stationary model with no misspecification.
» Limitation: fails to capture many real-world systems.
» Focuses on offline computation of defender strategies.
> Limitation: computationally intractable for realistic models.



Prior Work

» Assumes a stationary model with no misspecification.
» Limitation: fails to capture many real-world systems.
» Focuses on offline computation of defender strategies.
» Limitation: computationally intractable for realistic models.

What if the model is misspecified and non-stationary?




Method: Conjectural Online Learning
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Method: Conjectural Online Learning
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> The model parameters are denoted by 6.
» The defender has a conjecture 8 ~ p; € A(O).
» The defender is misspecified if 8 ¢ ©.
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Method: Conjectural Online Learning

prior p1
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> The model parameters are denoted by 6.
» The defender has a conjecture 8 ~ p; € A(O).
» The defender is misspecified if 6 ¢ ©.



Method: Conjectural Online Learning

prior p1

lBayesian information feedback i;

learning

POSTERIOR CONJECTURE STRATEGY
rollout action

» Theorem 5.3: performance improvement bound of COL.

» Theorem 5.4: asymptotic consistency of COL.



COL Converges to Consistent Conjectures
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COL Converges to Consistent Conjectures
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The Berk-Nash Equilibrium

Attacker Defender
scker ——2¢
| ) 0o-a m00 Il

Conjecture Conjecture

Definition (Berk-Nash Equilibrium (Informal))
A strategy profile 7 and an occupancy measure v € A(B) is a
Berk-Nash equilibrium iff

1. NASH. 7y is a best response against w_y.

2. BERK. Each player’s conjecture is consistent.

3. STATIONARITY. v is a limit point of COL.
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Experimental Evaluation

Attcker Clients

» Model 8: distribution of
security alerts.

» Defender: controls the
blocking threshold.

> Baseline: SNORT

» A rule-based intrusion
prevention system.

Defender



Comparison with an Industry Standard

Model change
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> 0O represents distributions of intrusion detection alerts.



Comparison with an Industry Standard
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What’s new here?)

COL provides a higher level of automation than SNORT.




Summary



How to achieve automated and optimal security response?
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Key Elements for Optimal Security Response

Algorithms 1.1,2.1,3.1,
Stochastic 4.1,4.25.1,6.1

approximation

Theorems 1.1, 2.1,

Theoretical structures .3, 4.5 5.1, 6.4

Open-source

Digital twin Platform*

*Kim Hammar. Cyber Security Learning Environment (CSLE). Documentation: https://limmen.dev/csle/,
traces: https://github.com/Limmen/csle/releases/tag/v0.4.0, source code:
https://github.com/Limmen/csle, video demonstration: https://www.youtube.com/watch?v=iE2KPmt Is2A&
2023. URL: https://limmen.dev/csle/.
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Conclusion

» Optimal and automated security response is feasible using
a methodology based on
P engineering principles for self-adaptive systems.
» mathematical models for numerical computations.



