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How to automate security response operations in an optimal way?
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it systems facilitate

Flight control
computer

Sensors and
actuators

Critical infrastructures Financial ecosystems Cyber-physical systems

e.g., power and transport
infrastructures.

e.g., banking systems,
payment processing systems,
Swish, etc.

e.g., flight control systems,
train signaling systems,
healthcare systems, etc.
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Examples of Response Actions
Old path

New path

Honeypot Server

Defender
Revoke certificates

Blacklist IP

. . .
Replicated system

Client interface
Request

Se
rv
ice

Consensus protocol

Flow control
By redirecting traffic, the defender
can isolate malicious behavior.

Access control
By adjusting resource permissions,

the defender can prevent the attacker
from compromising critical assets.

Replication control
Replication can ensure that multiple
replicas of services remain available
even when some are compromised.
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Thesis Contributions - Optimal Security Response
I My thesis advances optimal security response through

theoretical foundations, system design, and
experimental validation.

Systems
engineering

Open-source
platform∗

Algorithms 1.1, 2.1,
3.1, 4.1, 4.2, 5.1,

6.1

Theory

Theorems 1.1, 2.1,
4.3, 4.5, 5.1, 6.4.

Experimentation

∗Kim Hammar. Cyber Security Learning Environment (CSLE). Documentation: https://limmen.dev/csle/,
traces: https://github.com/Limmen/csle/releases/tag/v0.4.0, source code:
https://github.com/Limmen/csle, video demonstration: https://www.youtube.com/watch?v=iE2KPmtIs2A&.
2023. url: https://limmen.dev/csle/.

https://limmen.dev/csle/
https://github.com/Limmen/csle/releases/tag/v0.4.0
https://github.com/Limmen/csle
https://www.youtube.com/watch?v=iE2KPmtIs2A&
https://limmen.dev/csle/


8/53

Methodology for Optimal Security Response
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Foundations

A. Wald

W. Weibull
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Case Studies

Optimal
security
response

How to optimally
control a system

under attack?

When is the
optimal time
to respond?

How to optimally
respond under
uncertainty?

Game Theory

Reliability
Theory

Optimal
Stopping

Paper 1∗

Paper 4†

Paper 5‡

∗Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

†Kim Hammar and Rolf Stadler. “Intrusion Tolerance for Networked Systems through Two-Level Feedback
Control”. In: 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
2024, pp. 338–352. doi: 10.1109/DSN58291.2024.00042.

‡Kim Hammar et al. Automated Security Response through Online Learning with Adaptive Conjectures.
https://arxiv.org/abs/2402.12499. To appear in IEEE Transactions on Information Forensics and Security
(TIFS).. 2024.

https://doi.org/10.1109/TNSM.2022.3176781
https://doi.org/10.1109/DSN58291.2024.00042
https://arxiv.org/abs/2402.12499
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When is the Optimal time to Respond?

I The attacker seeks to intrude on the infrastructure.
I One response action, e.g., block the gateway.

Intrusion event Intrusion ongoing

time

Early response times Response times that
affect the intrusion
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Optimal Stopping

I Observe the system through the stochastic process (ot)T
t=1.

I ot is the number of security alerts at time t.
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Optimal Stopping

I Observe the system through the stochastic process (ot)T
t=1.

I ot is the number of security alerts at time t.

20 40 60 80 100 120 140 160 180 200
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ot When to stop?
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Optimal Stopping Time

I Find the optimal stopping time τ? ∈ arg maxτ E[J(τ)].

t

ot

τ?
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Dynamical System

H C
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Stopped

Healthy Compromised
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How to model the observation distribution ot ∼ z(· | st)?

Challenge: System identification.

IT Infrastructure ObservationsInputs

Attacks
& responses

50 100 150 200 250

20

40

t
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System Identification

I Measurement data from the digital twin:

0 2000 4000 6000 8000
Number of security alerts ot

P
ro

b
ab

il
it

y

Exploit of cve-2015-5602

0 2000 4000 6000 8000
Number of security alerts ot

Exploit of cve-2016-10033

network intrusion normal operation

I Estimate ot ∼ z(· | st) with the empirical distribution ẑ .
I ẑ →a.s z (Glivenko-Cantelli theorem).
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Belief State

I The defender can compute the belief

bt , P[St = C | b1, o1, o2, . . . ot ].

Defender

Belief
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Belief State

I The defender can compute the belief

bt , P[St = C | b1, o1, o2, . . . ot ].

I Stopping strategy:
π(b) : [0, 1]→ {Stop,Continue}.

Defender

Belief
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Threshold Structure of an Optimal strategy

Theorem
There exists an optimal defender strategy of the form:

π?(b) = Stop ⇐⇒ b ≥ α?, where α? ∈ [0, 1].

The stopping set is S = [α?, 1].

b
0 1

belief space B = [0, 1]

S1

α?
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Optimal Multiple Stopping

I Suppose the defender can take L ≥ 1 response actions.

I Find the optimal stopping times τ?L , τ?L−1, . . . , τ?1 .

t

ot

τ?L τ?L−1 τ?L−2 . . .
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Threshold Structure of an Optimal Strategy
Theorem
I Stopping sets are nested Sl−1 ⊆ Sl for l = 2, . . . L.
I There exists an optimal defender strategy of the form:

π?l (b) = Stop ⇐⇒ b ≥ α?l , l = 1, . . . , L

where α?l ∈ [0, 1] is decreasing in l .

b
0 1

S1

S2

...

SL

α?1α?2α?L . . .
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Testbed at KTH
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Evaluation Scenario

I IT Infrastructure
I 31 virtual servers (containers).
I 11 vulnerabilities: cve-2010-0426,

cve-2015-3306, etc.

I Attacker
I 3 types of attackers.
I Reconnaissance and exploits.

I Defender
I Response action: block the gateway.
I Threshold response strategy.

Attacker Clients
. . .

Defender

1 IPS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31
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Evaluation Results

0 20 40 60
compute time (min)

Performance vs attacker 1

0 20 40 60
compute time (min)

Performance vs attacker 2

0 20 40 60
compute time (min)

Performance vs attacker 3

simulation emulation (digital twin) optimal

­Performance on the simulator transfers to the digital twin.
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Narrowing the Gap between Theory and Practice
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Narrowing the Gap between Theory and Practice

0 20 40 60
compute time (min)

Performance vs attacker 1

0 20 40 60
compute time (min)

Performance vs attacker 2

0 20 40 60
compute time (min)

Performance vs attacker 3

simulation emulation (digital twin) optimal

­Performance on the simulator transfers to the digital twin.

First demonstration of optimal security response on an
infrastructure with a practical configuration (31 servers).

What’s new here?
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Comparison with Prior Work

Theoretical
Optimality

Practical
Applicability

Goal

This
thes

is

Research frontier

Current response systems are based on heuristics. Optimal
solutions have only been validated in simulation.

Limitation of prior work.
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Intrusion Tolerance

Consider a distributed system that provides a replicated service.
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Intrusion Tolerance
Consider a distributed system that provides a replicated service.
The system should tolerate intrusions.

. . .
Attacker Clients

api gateways

Compute nodes

Storage nodes

Service
replica 1

Service
replica 2

Service
replica 3

Service
replica 4

Client interface & load balancer
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Intrusion Tolerance

Intrusion event Time of full recovery
Time

Recovery time
Survivability

Lo
ss

Normal
performance

Sy
st
em

pe
rfo

rm
an
ce

Tolerance

Cumulative
performance loss

(want to minimize)
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Building Blocks of An Intrusion-Tolerant System

H C

∅

Crashed

Healthy Compromised

Crash Crash
Recovery

Compromise

20 40 60 80 100

0.2
0.4
0.6
0.8
1

25 replicas 50 replicas 100 replicas

t

Reliability

. . .
Replicated system

Client interface
Request

Re
sp
on

se

Consensus protocol

1 2 3 4 5

1. Intrusion-tolerant consensus protocol

A quorum needs to reach agreement
to tolerate f compromised replicas.

2. Replication strategy

Cost-reliability trade-off.

3. Recovery strategy

Compromises will occur as t →∞.
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- No recoveries

Published 1995
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- No recoveries

Published 1998
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2002
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2004
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Prior Work on Intrusion-Tolerant Systems

- Adaptive replication based on heuristics
- Periodic recoveries

Published 2006
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2006
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Supports both periodic and reactive recoveries
- Does not provide reactive recovery strategies

Published 2007
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2011
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2018
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2023
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Prior Work on Intrusion-Tolerant Systems

- Fixed number of replicas
- Periodic recoveries

Published 2023

Can we do better by applying our methodology for optimal security response?
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The TOLERANCE Architecture

Two-level recovery and replication control with feedback.

tolerance

Node 1
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node 2
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

Node Nt
Privileged domain

Application domain
Service
replica

Node controllerids
alerts

reco-
very

Virtualization layer
Hardware

. . .

Consensus protocol

System controller
State estimate Evict or add State estimate Evict or add State estimate Evict or add

. . .
Service requests Responses

Clients Attacker

Intrusion attempts
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Definition (Correct service)
The system provides correct service if the healthy replicas satisfy
the following properties:

Each request is eventually executed. (Liveness)
Each executed request was sent by a client. (Validity)
Each replica executes the same request sequence. (Safety)
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Proposition (Correctness of TOLERANCE)
A system that implements the tolerance architecture provides
correct service if

Network links are authenticated.
At most f nodes are compromised or crashed simultaneously.
Nt ≥ 2f + 1.
The system is partially synchronous.
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Intrusion Tolerance as a Two-Level Game

. . .
π1(b1) π2(b2) π3(b3) π4(b4) πNt (bNt )

Belief
transmissions

Node controllers

Replicated
system

System controller
π(b1, . . . , bNt )

b1 b2 b3 b4 bNt

. . .
AttackerClients

I We formulate intrusion tolerance as a two-level game.
I The local game models intrusion recovery.
I The global game models replication control.
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The Benefit of Optimal Recovery

2 4 6 8 10 12 14 16 18 20

0.2

0.3

0.4

Strategy based on my methodology Periodic strategy
DKL( no intrusion ‖ intrusion )

Operational cost
(recovery and attack costs)

Benefit of optimal recovery

Optimal recovery can significantly reduce operational cost
given that an intrusion detection model is available.

Key insight
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The Benefit of Optimal Replication

200 400 600 800 1,000

0.5

1

My methodology Fixed replication strategy with 100 replicas

t

Service availability Benefit of optimal replication control

Optimal replication can guarantee a high service avail-
ability in expectation. The benefit of optimal replication
is mainly prominent for long-running systems.

Key insight
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Experimental Evaluation
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Experiment Setup - Emulated Intrusions

Replica ID Intrusion steps

1 tcp syn scan, ftp brute force
2 tcp syn scan, ssh brute force
3 tcp syn scan, telnet brute force
4 icmp scan, exploit of cve-2017-7494
5 icmp scan, exploit of cve-2014-6271
6 icmp scan, exploit of cwe-89 on dvwa
7 icmp scan, exploit of cve-2015-3306
8 icmp scan, exploit of cve-2016-10033
9 icmp scan, ssh brute force, exploit of cve-2010-0426
10 icmp scan, ssh brute force, exploit of cve-2015-5602
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Comparison with State-of-the-art Systems

0
0.5
1

101
102

0
0.1
0.2

0
0.5
1

101
102

0
0.1
0.2

0
0.5
1

15 25 ∞

101
102

my methodology no-recovery periodic periodic-adaptive

15 25 ∞ 0
0.1
0.2

15 25 ∞
Maximum time-to-recovery ∆R Maximum time-to-recovery ∆R Maximum time-to-recovery ∆R

Average availability T (A) Average time-to-recovery T (R) Average recovery frequency F (R)

N
1

=
3

N
1

=
6

N
1

=
9

Comparison between the control strategies produced by my methodology
and the baselines; ∆R is the maximum allowed time-to-recovery; N1 is
the number of initial nodes.
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Comparison with State-of-the-art Systems
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First intrusion-tolerant system that ensures a chosen level
of service availability while minimizing operational cost.

What’s new here?
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∗Kim Hammar and Rolf Stadler. “Intrusion Prevention through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

†Kim Hammar and Rolf Stadler. “Intrusion Tolerance for Networked Systems through Two-Level Feedback
Control”. In: 2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
2024, pp. 338–352. doi: 10.1109/DSN58291.2024.00042.

‡Kim Hammar et al. Automated Security Response through Online Learning with Adaptive Conjectures.
https://arxiv.org/abs/2402.12499. To appear in IEEE Transactions on Information Forensics and Security
(TIFS).. 2024.

https://doi.org/10.1109/TNSM.2022.3176781
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https://arxiv.org/abs/2402.12499
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Challenge: IT systems are complex.

I It is not realistic that any model will capture all the details.
I =⇒ We have to work with approximate models.
I =⇒ model misspecification.

I How does misspecification affect optimality and convergence?
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Prior Work

I Assumes a stationary model with no misspecification.
I Limitation: fails to capture many real-world systems.

I Focuses on offline computation of defender strategies.
I Limitation: computationally intractable for realistic models.
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Prior Work

I Assumes a stationary model with no misspecification.
I Limitation: fails to capture many real-world systems.

I Focuses on offline computation of defender strategies.
I Limitation: computationally intractable for realistic models.

What if the model is misspecified and non-stationary?

Problem
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Method: Conjectural Online Learning
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Method: Conjectural Online Learning
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I The model parameters are denoted by θ.
I The defender has a conjecture θ ∼ ρt ∈ ∆(Θ).
I The defender is misspecified if θ 6∈ Θ.
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Method: Conjectural Online Learning
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I Theorem 5.3: performance improvement bound of col.
I Theorem 5.4: asymptotic consistency of col.
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COL Converges to Consistent Conjectures
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COL Converges to Consistent Conjectures
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The Berk-Nash Equilibrium

Attacker Defender

Conjecture Conjecture

Definition (Berk-Nash Equilibrium (Informal))
A strategy profile π and an occupancy measure ν ∈ ∆(B) is a
Berk-Nash equilibrium iff
1. Nash. πk is a best response against π−k.
2. Berk. Each player’s conjecture is consistent.
3. Stationarity. ν is a limit point of col.
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Experimental Evaluation

I Model θ: distribution of
security alerts.

I Defender: controls the
blocking threshold.
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Experimental Evaluation

I Model θ: distribution of
security alerts.

I Defender: controls the
blocking threshold.

I Baseline: snort
I A rule-based intrusion

prevention system.
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Defender

. . .
Attacker Clients
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Comparison with an Industry Standard
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I θ represents distributions of intrusion detection alerts.
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Comparison with an Industry Standard
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col provides a higher level of automation than snort.

What’s new here?
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Summary
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How to achieve automated and optimal security response?
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Key Elements for Optimal Security Response

Digital twin

Theoretical structures

Stochastic
approximation
S1 S2 S3 Theorems 1.1, 2.1,

4.3, 4.5, 5.1, 6.4

Open-source
Platform∗

Algorithms 1.1,2.1,3.1,
4.1,4.2,5.1,6.1

∗Kim Hammar. Cyber Security Learning Environment (CSLE). Documentation: https://limmen.dev/csle/,
traces: https://github.com/Limmen/csle/releases/tag/v0.4.0, source code:
https://github.com/Limmen/csle, video demonstration: https://www.youtube.com/watch?v=iE2KPmtIs2A&.
2023. url: https://limmen.dev/csle/.

https://limmen.dev/csle/
https://github.com/Limmen/csle/releases/tag/v0.4.0
https://github.com/Limmen/csle
https://www.youtube.com/watch?v=iE2KPmtIs2A&
https://limmen.dev/csle/
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Conclusion

I Optimal and automated security response is feasible using
a methodology based on
I engineering principles for self-adaptive systems.
I mathematical models for numerical computations.


