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Problem: Causal System Identification

▶ Networked system: e.g., cloud system or mobile network.
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Problem: Causal System Identification
Analyze

Measure Control

▶ Networked system: e.g., service mesh or cloud infrastructure.
▶ How does the resource allocation affect service response time?
▶ How does the network configuration affect service availability?
▶ How does a link failure impact network congestion?
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Causal Reasoning is Needed for Reliable Operation

Network failure 18.7%
15.5%Cloud provider failure

14.9%Configuration change
14.2%Software change

12.9%Hardware failure
12%Power failure

11.8%Cyberattack

Causes of outages in networked systems. Source: Dynatrace.
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Causal Reasoning is Needed for Reliable Operation
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Causal Models Can Enable Autonomous Management

Causal model

Automatic control

Autonomous
management

Intent-based networking,
zero-touch management

Reinforcement learning,
lookahead planning
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Our Method: (Online) Active Causal Learning

U

X Z Y

identification

measurementsintervention

Target system

Causal model

▶ Target system: e.g., service mesh or cloud infrastructure.
▶ Measurements: system metrics, e.g., CPU utilization.
▶ Intervention: change variables, e.g., resource allocation.
▶ Causal model: model of causal effects.

▶ e.g., how does system load affect response time?



7/40

Outline

▶ Structural Causal Models.
▶ Theoretical background.

▶ Problem Formulation.
▶ Online identification of an IT system.

▶ Active Causal Learning.
▶ Our method for online system identification.

▶ Experimental Evaluation.
▶ Target system: service mesh on our testbed.

▶ Conclusion.
▶ Takeaways.
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The Causal Graph

U

X Z Y

▶ Directed acyclic graph.

▶ Encodes causal structure of the system.
▶ Nodes: system variables.
▶ Edges: causal dependencies.

▶ Two types of variables: endogenous and exogenous (shaded).
▶ Endogenous variables: internal properties (e.g., response time).
▶ Exogenous variables: external factors (e.g., system load).
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Causal Structure - Example

Service requests

Service responses

... ...
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Causal Structure - Example

Service requests

Service responses

... ...

R: Response time (ms)

Load: L (req/s) C : CPU utilization (%)

▶ Load (L) is exogenous (external to the system).
▶ CPU utilization (C) and response time (R) are endogenous.
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Causal Structure - Example

Service requests

Service responses

R: Response time (ms)

... ...

Load: L (req/s) C : CPU utilization (%)

L

C R

▶ Load (L) is exogenous (external to the system).
▶ CPU utilization (C) and response time (R) are endogenous.
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Causal Functions

L

C R
fR

fC

▶ Endogenous variables are associated with causal functions.
▶ C = fC (L).
▶ R = fR(C , L).
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Causal Functions

L

C R
fR

fC

P(L)

▶ Endogenous variables are associated with causal functions.
▶ C = fC (L).
▶ R = fR(C , L).

▶ Exogenous variables are associated with distributions.
▶ L ∼ P(L).

Structural causal model (SCM)

▶ Graph G, functions F, distribution P.
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Problem Setup

U

X Z Y

identification

measurementsintervention

Target system

Causal model

▶ We consider an IT system modeled by an SCM.
▶ The causal graph G and the distribution P(U) are known.
▶ The causal functions F are unknown and time-varying.
▶ Problem: identify F from online system measurements.
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Problem Statement

U

X Z Y

identification

measurementsintervention

Target system

Causal model

Select a sequence of interventions and use the resulting system
measurements to estimate a sequence of functions

F̂1, F̂2, . . .

that are as close as possible to the true sequence F1, F2, . . . while
minimizing the operational cost of the interventions.
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Interventions

L

c R
fR

P(L)

▶ Suppose that we intervene on the system and artifically
increase the CPU utilization to c%.

▶ We represent the intervention with the do-operator.
▶ An intervention do(C = c) fixes the variable C to value c.

▶ Allows to sample the causal function fR(C = c, L).
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Example Causal Function

CPU utilization C

Re
sp

on
se

tim
e

R fR(C , L = ℓ)



15/40

Estimating a Causal Function from Observational Data
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Estimating a Causal Function from Observational Data

CPU utilization C
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Observation
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▶ Monitoring yields samples from the current operating region.
▶ e.g., under current CPU utilization, response time is 10-15 ms.
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Estimating a Causal Function from Interventional Data

CPU utilization C

Re
sp

on
se

tim
e

R Current operating region
Observation
Intervention

fR(C , L = ℓ)

▶ Monitoring yields samples from the current operating region.
▶ e.g., under current CPU utilization, response time is 10-15 ms.

▶ Intervention allows to explore the complete operating region.
▶ e.g., under max CPU utilization, response time is 100-200 ms.
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Problem Formalization
▶ We capture the cost of an intervention through a cost

function c(do(X′ = x′)), which is system specific.
▶ We capture the difference between the estimate F̂t and the

ground truth Ft through the loss function

L (F̂t , Ft) =
∑

Vi ∈V

∫
R(paG(Vi ))

(
fVi ,t(x) − f̂Vi ,t(x)

)2
P[dx],

where V is the set of endogenous variables and paG(Vi)) is
the set of parents of Vi in the causal graph G.

Objective

minimize
(do(X′

t=x′
t),F̂t)t≥1

∞∑
t=1

γt−1
(

L (F̂t , Ft) + c
(
do(X′

t = x′
t)

))
,

where γ ∈ (0, 1) is a discount factor.
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Active Causal Learning

Model structure Model estimation Active learning

U

X Z Y
The causal graph G

encodes structural relationships
among system components.

Estimate the functions Ft
via Gaussian process regression.

(i) Evaluate interventions
through rollouts.

bt
J̃

(ii) Select an informative
intervention based on

lookahead optimization.

Candidate
models

Model
distribution
P[Ft | Dt ].

System configuration Dataset Dt
Measurement samples of the system variables V, U

Intervention
do(X′ = x′)
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Gaussian Process Regression

0 2 4 6 8 10 12 14 16 18 20
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Estimate Causal function Measurement sample

▶ We estimate each causal function with a Gaussian process.
▶ Sequentially update the estimate through Bayes rule.
▶ The Gaussian process provides uncertainty quantification.

▶ Informs us where to intervene.
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Active Learning through Rollout
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Illustrative Example

U X Z Y
fZ (X ) = e−XfX (U) = U fY (Z ) = cos(Z ) − e −Z

20

▶ Exogenous variables: U = {U}.
▶ Endogenous variables: V = {X , Z , Y }.
▶ Causal functions: F = {fX , fZ , fY }.
▶ Probability distribution: U ∼ N (0, 0.1).
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Comparison with Passive Learning (1/2)
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our active learning method

passive learning
Estimated causal function True causal function Measurement sample

▶ Passive learning:
▶ Use measurements from the current operating region.
▶ No interventions.
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our active learning method

passive learning
Estimated causal function True causal function Measurement sample

Current operating region.

▶ Passive learning:
▶ Use measurements from the current operating region.
▶ No interventions.
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Comparison with Passive Learning (2/2)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1,000

2,000

3,000

passive learning
our active learning method

Number of measurement samples

Loss L (F̂t , Ft)

Passive learning provides limited coverage of the system’s
operating region, leading to inaccurate model estimates.

Takeaway.
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Theoretical Properties (Informal)∗

Proposition 1 (Asymptotic consistency)
If the causal function lies in the Reproducing kernel Hilbert space
of the Gaussian process, then the mean of the Gaussian process
converges to the causal function in the limit of infinite data.

Proposition 2 (Optimal Bayesian estimate)
Given the posterior distribution of the Gaussian process, then the
mean of the Gaussian process minimizes the loss function L .

Proposition 3 (Policy improvement)
The rollout policy improves the greedy intervention policy, i.e., the
intervention policy without lookahead.

∗For theoretical details, see our paper: “Online Identification of IT Systems through Active Causal Learning”,
Hammar and Stadler 2025, https://arxiv.org/pdf/2509.02130.

https://arxiv.org/pdf/2509.02130
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Target System

...

Clients

Cloud
Gateway Firewall Web server

Service mesh

1 2

3 4

▶ A cloud-based web application with a service mesh backend.
▶ The web server is implemented using Flask.
▶ The service mesh is implemented with Kubernetes and Istio.
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System Configuration
Node 1

M1 M2

Node 2

M3

Front node

Web application

Node 3

M1 M2

Node 4

M3

Service
requests

Service S1
Service S2

▶ The mesh consists of 4 physical nodes and 3 microservices.
▶ Nodes 1 and 3 run microservices M1 and M2.
▶ Nodes 2 and 4 run microservice M3.
▶ The mesh runs two services: S1 and S2.

▶ S1 invokes M1 and M3.
▶ S2 invokes M2.
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Control Variables
Node 1

M1 M2

Node 2

M3

Front node

Web application

Node 3

M1 M2

Node 4

M3

Service
requests

Service S1
Service S2

cpu: C1

cpu: C3

P 1
,B

1

P 2
,B

2

1−
P 1

,B
1

1−
P 2

,B
2

▶ The path of a request for service i is decided by the routing
probability Pi .

▶ A request for service i is blocked at the front node with
blocking probability Bi .

▶ The CPU allocated to nodes 1 and 3 are decided by the CPU
allocations C1 and C3.
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Causal Graph

ϵR1

ϵR2

B1

L1

L2

B2

L̃1

L̃2

R1

R2

C1

C3

P1

P2

▶ Exogenous variables:
▶ Bi : blocking probability of service Si ;
▶ Pi : routing probability of service Si to node 1;
▶ Cj : CPU allocation to node j ;
▶ Li : load of service Si (requests per second); and
▶ ϵR1 , ϵR2 : random noise variables.

▶ Endogenous variables:
▶ L̃i : carried (i.e., non-blocked) load of service Si ; and
▶ Ri : response time (s) of service Si .
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Evaluation Scenarios
▶ Evaluation: Identify the causal model from data.

▶ Scenario 1:
▶ Load service S1 with L1 = 4 requests per second.
▶ Load service S2 with L2 = 15 requests per second.
▶ Causal graph is as shown in the previous slide.
▶ Causal functions are time-independent.

▶ Scenario 2:
▶ Time interval [1, 11): Run only S2 with load L2 = 1.
▶ At time t = 11: Start S1 in the background with L1 = 20.
▶ Causal functions are time-dependent.
▶ Causal graph:

ϵR2B2

L2

L̃2

R2 C3

C1 P2
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Ground Truth Model (1/2)
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Ground Truth Model (2/2)
C1 P1 L̃1 R1 C3 P2 L̃2 R2 B1 B2 L1 L2

C1

P1

L̃1

R1
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P2

L̃2
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L1
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1.00 0.00 0.08 -0.18 0.00 0.00 0.02 -0.11 0.08 0.02 0.03 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.00 1.00 0.00 0.08 0.00 0.17 -0.10 0.77 0.03 0.57 0.15

-0.18 0.00 0.00 1.00 -0.18 0.00 0.03 0.34 -0.01 0.03 0.00 0.00
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-0.11 0.00 -0.10 0.34 -0.10 0.00 0.02 1.00 -0.10 0.02 -0.04 0.00
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1.00

-1.00

Pearson
correlation
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Operational Costs of Interventions

Intervention Cost
Emulating the service load Li 3000
Adjusting the routing probability Pi 1000
Adjusting the blocking probability Bi 2000
Modifying the CPU allocation Cj 3000
Monitoring without intervening, i.e., do(∅) 1

Table 1: Intervention costs for defining the cost function c.
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Passive Learning Baseline for Scenario 1
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Causal Active Learning for Scenario 1
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Causal Active Learning Dynamics for Scenario 1
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Estimation Loss for Scenario 1

5 10 15 20 25 30 35 40 45 50

1 · 106
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our active learning method
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Loss L (F̂t , Ft)
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Causal Active Learning Dynamics for Scenario 2
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Estimation Loss for Scenario 2

5 10 15 20 25 30 35 40 45 50

1 · 106
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system
change

Unlike offline identification methods, our online method al-
lows for quick adaptation of the model to system changes.

Takeaway
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Conclusion
▶ Causal models are central to achieving the longstanding goal

of automating network and system management tasks.

▶ We develop active causal learning.
▶ The first online method for causal identification of IT systems.
▶ We show that the method has appealing theoretical properties.
▶ We validate the method experimentally on a service mesh.

U

X Z Y

identification

measurementsintervention

Target system

Causal model


