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Problem: Causal System Identification

Analyze

Measure Control

> Networked system: e.g., service mesh or cloud infrastructure.
» How does the resource allocation affect service response time?
> How does the network configuration affect service availability?
» How does a link failure impact network congestion?



Causal Reasoning is Needed for Reliable Operation

Network failure
Cloud provider failure

Configuration change
Software change
Hardware failure

Power failure
Cyberattack

Causes of outages in networked systems. Source: Dynatrace.



Causal Reasoning is Needed for Reliable Operation

CONECT Why UK Connect  Solutions v Sectors v Resources v About v

Microsoft Outage: Configuration

Change Failure Sparks Global
Service Disruption

Recent outages across cloud and telecom sectors reveal a common thread.

Ross Spence November 7 2025
Solutions Manager 7 min read




Causal Models Can Enable Autonomous Management

Intent-based networking,

Autonomous \ zero-touch management

management

Reinforcement learning,

Automatic control | lookahead planning
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Our Method: (Online) Active Causal Learning
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Target system

> Target system: e.g., service mesh or cloud infrastructure.
> Measurements: system metrics, e.g., CPU utilization.

> Intervention: change variables, e.g., resource allocation.
» Causal model: model of causal effects.
» e.g., how does system load affect response time?
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Outline

» Structural Causal Models.
» Theoretical background.

> Problem Formulation.
» Online identification of an IT system.

» Active Causal Learning.
» Our method for online system identification.

> Experimental Evaluation.
» Target system: service mesh on our testbed.

» Conclusion.
» Takeaways.



The Causal Graph
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» Directed acyclic graph.

» Encodes causal structure of the system.

» Nodes: system variables.
» Edges: causal dependencies.

» Two types of variables: endogenous and exogenous (shaded).

» Endogenous variables: internal properties (e.g., response time).
> Exogenous variables: external factors (e.g., system load).



Causal Structure - Example

@ Service requests
@ Service responses




Causal Structure - Example

Load: L (req/s) C: CPU utilization (%)

N
@ Service requests \i

@ ~Service responses .‘E

R: Response time (ms)

» Load (L) is exogenous (external to the system).

» CPU utilization (C) and response time (R) are endogenous.



Causal Structure - Example

Load: L (req/s)
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C: CPU utilization (%)

Service requests

Service responses
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R: Response time (ms)
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» Load (L) is exogenous (external to the system).

» CPU utilization (C) and response time (R) are endogenous.



Causal Functions

fc /@\

-
-

(O —"=®

» Endogenous variables are associated with causal functions.
> C=fc(L).
> R=fR(C,L).
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» Endogenous variables are associated with causal functions.
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P> Exogenous variables are associated with distributions.
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Causal Functions
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» Endogenous variables are associated with causal functions.
> C=fc(L).
> R=fR(C,L).

» Exogenous variables are associated with distributions.
> L~ P(L).

Structural causal model (SCM)

» Graph G, functions F, distribution P.



Outline

» Structural Causal Models.
» Theoretical background.

» Problem Formulation.
» Online identification of an IT system.
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» We consider an IT system modeled by an SCM.
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» We consider an IT system modeled by an SCM.
» The causal graph G and the distribution P(U) are known.

» The causal functions F are unknown and time-varying.



Problem Setup
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Target system

» We consider an IT system modeled by an SCM.
» The causal graph G and the distribution P(U) are known.
» The causal functions F are unknown and time-varying.

» Problem: identify F from online system measurements.



Problem Statement
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Target system

Select a sequence of interventions and use the resulting system
measurements to estimate a sequence of functions

Fi,Fo, ...

that are as close as possible to the true sequence Fy, Fo,... while
minimizing the operational cost of the interventions.
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» Suppose that we intervene on the system and artifically
increase the CPU utilization to c%.
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» Suppose that we intervene on the system and artifically
increase the CPU utilization to ¢%.

P> We represent the intervention with the do-operator.
> An intervention do(C = c) fixes the variable C to value c.



Interventions
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» Suppose that we intervene on the system and artifically
increase the CPU utilization to c%.

> \We represent the intervention with the do-operator.
> An intervention do(C = c) fixes the variable C to value c.

» Allows to sample the causal function fgr(C = c, L).



Example Causal Function
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CPU utilization C



Estimating a Causal Function from Observational Data
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Estimating a Causal Function from Observational Data

»

Response time R

A @ Observation

— fR(C,L=1) Current opelrating region
4

Y

CPU utilization C

» Monitoring yields samples from the current operating region.

» e.g., under current CPU utilization, response time is 10-15 ms.



Estimating a Causal Function from Interventional Data

@® [ntervention

»

b @ Observation

— fr(C,L=1) Current opelrating region

Response time R

Y

CPU utilization C

» Monitoring yields samples from the current operating region.
» e.g., under current CPU utilization, response time is 10-15 ms.

» Intervention allows to explore the complete operating region.
» e.g., under max CPU utilization, response time is 100-200 ms.



Problem Formalization

> We capture the cost of an intervention through a cost
function c(do(X’ = x’)), which is system specific.



Problem Formalization

> We capture the difference between the estimate F, and the
ground truth F; through the loss function

ZEF) =Y / fv,.,t(x) ~ Fe())” Plax]

VeV R(pag(V;

where V is the set of endogenous variables and pag(V)) is
the set of parents of V; in the causal graph G.



Problem Formalization

Objective

minimize Z’yt_l <$(|A:t, F:) + c(do(X} = Xé)));
(do(Xi=xt),Fe)e>1 =1

where v € (0,1) is a discount factor.



Outline

» Structural Causal Models.
» Theoretical background.

> Problem Formulation.
» Online identification of an IT system.

» Active Causal Learning.
» Our method for online system identification.



Active Causal Learning

Model structure

The causal graph G
encodes structural relationships
among system components.

—
Candidate

models

Model estimation

Estimate the functions F;
via Gaussian process regression.

Active learning

() Evaluate interventions
through rollouts.

J Intervention
do(X' = x')

—
Model
distribution (ii) Select an informative
P[F. | D¢]. intervention based on

lookahead optimization.

System configuration

Dataset Dy -«

Measurement samples of the system variables V', U
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Active Causal Learning

Model structure Model estimation

— —
Candidate Model
The causal graph G models Estimate the functions F; distribution
encodes structural relationships via Gaussian process regression. | P[F, | Dy].
among system components.
System configuration Dataset D; <

» Estimate the causal functions F with Gaussian processes.



Active Causal Learning

Model structure Model estimation Active learning
e (i) Evaluate interventions
N - through rollouts.
’/

Intervention
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Candidate Model do(X =x')
The causal graph G models Estimate the functions F, |distribution| (i) Select an informative
encodes structural relationships via Gaussian process regression. P[F. | Dy]. intervention based on
among system components. lookahead optimization.
System configuration Dataset Dy

» Estimate the causal functions F with Gaussian processes.
» Select interventions through a rollout policy that balances

» Exploration: reducing model uncertainty.
» Operational cost: avoiding costly interventions.



Active Causal Learning

Model structure

The causal graph G
encodes structural relationships
among system components.

—
Candidate

models

Model estimation

Estimate the functions F;
via Gaussian process regression.

Active learning

(i) Evaluate interventions
through rollouts.

- 5 J Intervention
Model do(X" = x')

distribution (ii) Select an informative

P[F; | Ds]. intervention based on

lookahead optimization.

System configuration

Dataset Dy

Measurement samples of the system variables VV,U

» Estimate the causal functions F with Gaussian processes.

» Select interventions through a rollout policy that balances

» Exploration: reducing model uncertainty.
» Operational cost: avoiding costly interventions.



Gaussian Process Regression

— Estimate — Causal function o Measurement sample

0 2 4 6 8 10 12 14 16 18 20
> We estimate each causal function with a Gaussian process.

» Sequentially update the estimate through Bayes rule.

» The Gaussian process provides uncertainty quantification.
» Informs us where to intervene.
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> We estimate each causal function with a Gaussian process.

» Sequentially update the estimate through Bayes rule.

» The Gaussian process provides uncertainty quantification.
» Informs us where to intervene.
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Active Learning through Rollout
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Active Learning through Rollout
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Active Learning through Rollout




lllustrative Example
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fx(U) = U f2(X)=eX £ (Z) =cos(Z) — e

» Exogenous variables: U = {U}.

» Endogenous variables: V= {X,Z, Y}.
» Causal functions: F = {fx, fz, fy }.

» Probability distribution: U ~ A(0,0.1).



Comparison with Passive Learning (1/2)

OUR ACTIVE LEARNING METHOD

fz(X) fr(2)
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> Passive learning:

» Use measurements from the current operating region.
» No interventions.



Comparison with Passive Learning (1/2)

OUR ACTIVE LEARNING METHOD
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» Passive learning:

» Use measurements from the current operating region.
» No interventions.



Comparison with Passive Learning (2/2)

Loss Z(F:,F;)

3,000 '
27000 --- PASSIVE LEARNING

—— OUR ACTIVE LEARNING METHOD
1,000

> 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of measurement samples

Takeaway.

Passive learning provides limited coverage of the system's
operating region, leading to inaccurate model estimates.




Theoretical Properties (Informal)*

Proposition 1 (Asymptotic consistency)

If the causal function lies in the Reproducing kernel Hilbert space
of the Gaussian process, then the mean of the Gaussian process
converges to the causal function in the limit of infinite data.

Proposition 2 (Optimal Bayesian estimate)
Given the posterior distribution of the Gaussian process, then the
mean of the Gaussian process minimizes the loss function £ .

Proposition 3 (Policy improvement)

The rollout policy improves the greedy intervention policy, i.e., the
intervention policy without lookahead.

*For theoretical details, see our paper: “Online Identification of IT Systems through Active Causal Learning”,
Hammar and Stadler 2025, https://arxiv.org/pdf/2509.02130.


https://arxiv.org/pdf/2509.02130
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» Structural Causal Models.
» Theoretical background.

> Problem Formulation.
» Online identification of an IT system.

» Active Causal Learning.
» Our method for online system identification.

» Experimental Evaluation.
» Target system: service mesh on our testbed.



Target System

Service mesh

Cloud 1 2
q Gateway Firewall Web server @
—o——0
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3 4

Clients

» A cloud-based web application with a service mesh backend.
» The web server is implemented using Flask.

P The service mesh is implemented with Kubernetes and lIstio.



System Configuration
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Service 51
- === Service S,

Service
requests

» The mesh consists of 4 physical nodes and 3 microservices.
» Nodes 1 and 3 run microservices My and M>.
» Nodes 2 and 4 run microservice Ms.

» The mesh runs two services: S; and S,.

» S; invokes M; and M.
> S, invokes M.



Control Variables
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» The path of a request for service i is decided by the routing
probability P;.

» A request for service i is blocked at the front node with
blocking probability B;.

» The CPU allocated to nodes 1 and 3 are decided by the CPU
allocations C; and Gs.



Causal Graph

> Exogenous variables:
» B;: blocking probability of service S;;
» P;: routing probability of service S; to node 1;
» (;: CPU allocation to node j;
> L;: load of service S; (requests per second); and
» g, €r,: random noise variables.

» Endogenous variables:

> [;: carried (i.e., non-blocked) load of service S;; and
> R;: response time (s) of service S;.



Evaluation Scenarios

» Evaluation: Identify the causal model from data.

» Scenario 1:
» Load service S; with L; = 4 requests per second.
» Load service S> with L, = 15 requests per second.
» Causal graph is as shown in the previous slide.
» Causal functions are time-independent.

» Scenario 2:
> Time interval [1,11): Run only S, with load L, = 1.
» At time t = 11: Start S; in the background with L; = 20.
» Causal functions are time-dependent.
» Causal graph:

®..9066
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Ground Truth Model (1/2)
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Ground Truth Model (2/2)
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Operational Costs of Interventions

Intervention Cost
Emulating the service load L; 3000
Adjusting the routing probability P; 1000
Adjusting the blocking probability B; 2000
Modifying the CPU allocation C; 3000

Monitoring without intervening, i.e., do()) 1

Table 1: Intervention costs for defining the cost function c.



Passive Learning Baseline for Scenario 1

—— Estimated causal function

True causal function © Measurement sample
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Causal Active Learning for Scenario 1

—— Estimated causal function
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Causal Active Learning Dynamics for Scenario 1
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Estimation Loss for Scenario 1
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Causal Active Learning Dynamics for Scenario 2

Function change
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Estimation Loss for Scenario 2
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Number of measurement samples

Takeaway

Unlike offline identification methods, our online method al-
lows for quick adaptation of the model to system changes.




Conclusion

» Causal models are central to achieving the longstanding goal
of automating network and system management tasks.

> We develop active causal learning.

» The first online method for causal identification of IT systems.
» We show that the method has appealing theoretical properties.
» We validate the method experimentally on a service mesh.
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