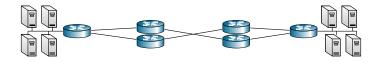
University of Melbourne December 5, 2025

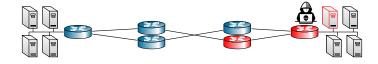
Dr. Kim Hammar kim.hammar@unimelb.edu.au

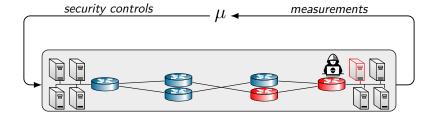
Paper: Incident Response Planning Using a Lightweight Large Language Model with Reduced Hallucination (Kim Hammar, Tansu Alpcan, and Emil Lupu)

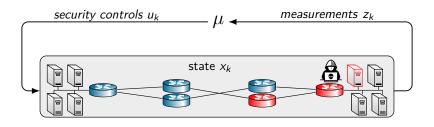
Accepted to NDSS Symposium 2026

Preprint: https://arxiv.org/abs/2508.05188







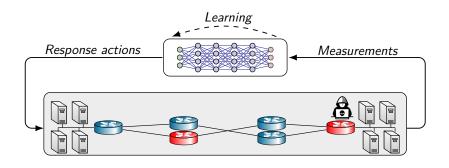


- ▶ Hidden states x_k , transition probabilities $p_{ij}(u)$.
- ▶ Observation z_k generated with probability $p(z_k \mid x_k, u_{k-1})$.
- ightharpoonup Control u_k .
- ▶ **Goal**: find a policy μ that meets response objectives.

Current Practice

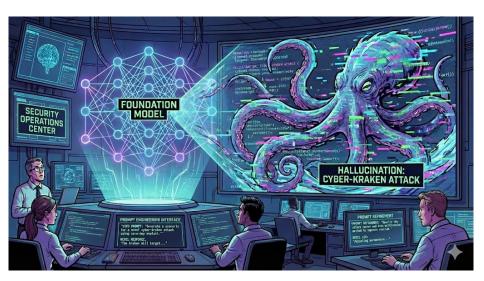
- Incident response is managed by security experts.
- ▶ We have a global shortage of more than 4 million experts.
- Pressing need for new decision support systems!

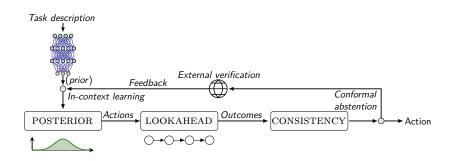
Next Generation Incident Response System



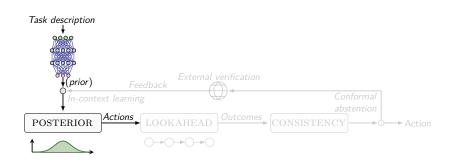
- We develop a response system centered around a lightweight foundation model.
- We analyze hallucination risks and establish theoretical reliability guarantees.

How to build a reliable system from unreliable components?

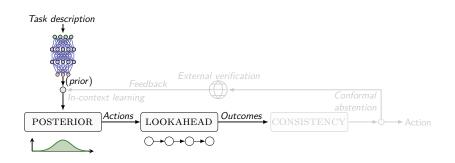




- ► We use the **model to generate candidate actions.**
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency
- Refine actions via in-context learning from feedback



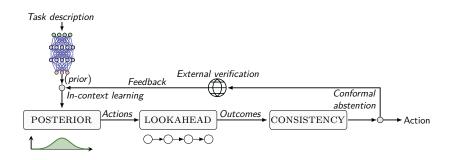
- ► We use the **model to generate candidate actions.**
- We evaluate actions through lookahead.
- ► We detect likely hallucinations by evaluating consistency
- Abstain from actions with low consistency
- ► Refine actions via **in-context learning** from feedback



- ► We use the **model to generate candidate actions.**
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency.
- Refine actions via in-context learning from feedback



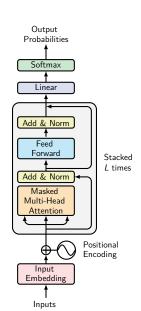
- ► We use the **model to generate candidate actions.**
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency
- ► Refine actions via **in-context learning** from feedback



- ► We use the **model to generate candidate actions.**
- We evaluate actions through lookahead.
- We detect likely hallucinations by evaluating consistency.
- Abstain from actions with low consistency.
- Refine actions via in-context learning from feedback.

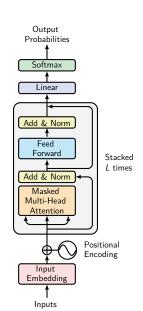
Different Types of Foundation Models

- Based on the transformer architecture.
- Trained on vast datasets.
- Billions of parameters.
- Examples:
 - Large language models (e.g., DeepSeek).
 - Time series models (e.g., Chronos).
 - ► Speech and audio models (e.g., Whisper).
 - ► Multi-modal models (e.g., Sora).



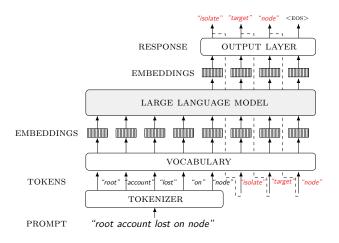
Different Types of Foundation Models

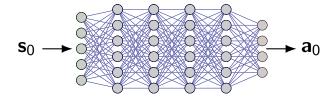
- ▶ Based on the transformer architecture.
- Trained on vast datasets.
- Billions of parameters.
- Examples:
 - Large language models (e.g., DeepSeek).
 - Time series models (e.g., Chronos).
 - ► Speech and audio models (e.g., Whisper).
 - Multi-modal models (e.g., Sora).

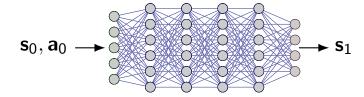


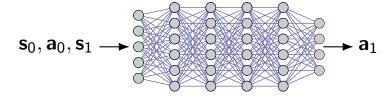
Generating Candidate Actions

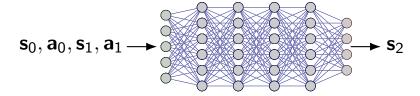
- Generate N candidate actions via auto-regressive sampling.
- Can think of the LLM as a base strategy.

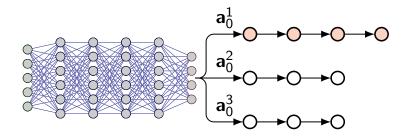








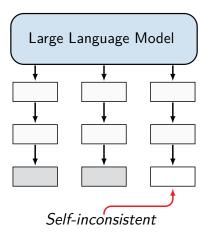




- For each candidate action \mathbf{a}_t^i , we use the LLM to predict the subsequent states and actions.
- We select the action with the best outcome.

Evaluating the **Consistency** of Actions

▶ We use **inconsistency** as an indication of hallucination.



Abstaining from Inconsistent Actions

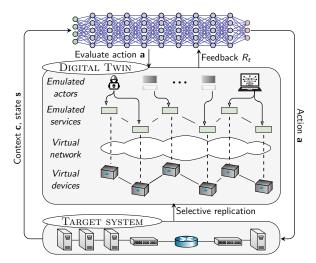
- Let $\lambda(\mathbf{a}) \in [0,1]$ be a function that evaluates the consistency of a given action \mathbf{a} .
- We use this function to abstain from actions with low consistency, as expressed by the following decision rule:

$$\rho_{\gamma}(\mathbf{a}_t) = \begin{cases} 1 \text{ (abstain)}, & \text{if } \lambda(\mathbf{a}_t) \leq \gamma, \\ 0 \text{ (not abstain)}, & \text{if } \lambda(\mathbf{a}_t) > \gamma, \end{cases}$$

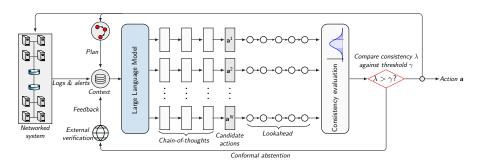
where $\gamma \in [0,1]$ is a **consistency threshold**.

In-Context Learning from Feedback

If an action does not meet the **consistency threshold**, we abstain from it, collect external feedback (e.g., from a digital twin), and select a new action through in-context learning.



Summary of Our Framework



Hallucinated Response Action

Definition 1 (informal)

A response action \mathbf{a}_t is hallucinated if it does not make any progress towards recovering from the incident.

Conformal Abstention

Let $\{a_i\}_{i=1}^n$ be a calibration dataset of hallucinated actions.

Proposition 1 (Informal)

- Assume the actions in the calibration dataset $\{a_i\}_{i=1}^n$ are i.i.d.
- Let $\tilde{\mathbf{a}}$ be an hallucinated action from the same distribution.
- Let $\kappa \in (0,1]$ be a desirable upper bound on the hallucination probability.

Define the threshold

$$\tilde{\gamma} = \inf \left\{ \gamma \; \left| \; \frac{\left| \left\{ i \; \middle| \; \lambda(\mathbf{a}_i) \leq \gamma \right\} \right|}{n} \geq \frac{\left\lceil (n+1)(1-\kappa) \right\rceil}{n} \right\},$$

where $\lceil \cdot \rceil$ is the ceiling function. We have

$$P(\text{not abstain from } \tilde{\mathbf{a}}) \leq \kappa.$$

Regret Bound for In-Context Learning

Proposition 2 (Informal)

- Let \mathcal{R}_K denote the **Bayesian regret**.
- Assume that the LLM's output distribution is aligned with the posterior given the context.
- Assume bandit feedback.

We have

$$\mathcal{R}_K \leq C\sqrt{|\mathcal{A}|K\ln K},$$

where C > 0 is a universal constant, A is the set of actions, and K is the number of ICL iterations.

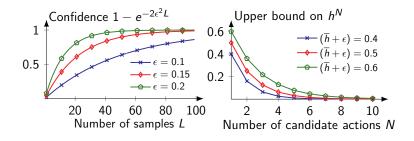
Chernoff Bound on the Hallucination Probability

Proposition 3 (Informal)

- Let h be the true hallucination probability.
- \blacktriangleright Let \overline{h} be the empirical probability based on L samples.

We have

$$P(h \ge \overline{h} + \epsilon) \le e^{-2\epsilon^2 L}$$
.



Conditions for Lookahead to Filter Hallucinations

Proposition 4 (Informal)

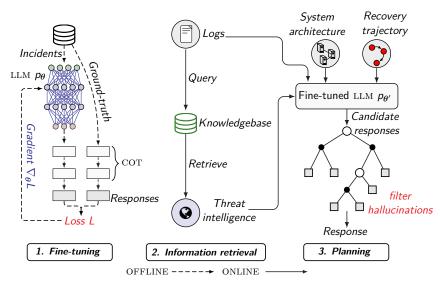
- Let η be the total variation between LLM's predictions and true system dynamics.
- Let δ be the minimal difference in recovery time between a hallucinated and non-hallucinated action.
- Assume at least one candidate action is not hallucinated.

If

$$\delta > 2\eta \|J\|_{\infty} \left(\|\tilde{J}\|_{\infty} + 1 \right),$$

then the selected action will not be hallucinated.

Experiment Setup

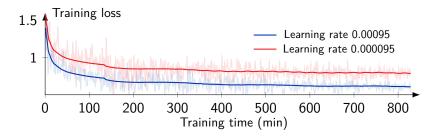


Instruction Fine-Tuning

- ► We fine-tune the DEEPSEEK-R1-14B LLM on a dataset of 68,000 incidents **x** and responses **y**.
- Minimize the cross-entropy loss:

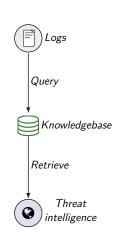
$$L = -\frac{1}{M} \sum_{i=1}^{M} \sum_{k=1}^{m_i} \ln p_{\theta} \left(\mathbf{y}_k^i \mid \mathbf{x}^i, \mathbf{y}_1^i, \dots, \mathbf{y}_{k-1}^i \right),$$

where m_i is the length of the vector \mathbf{y}^i .



Retrieval-Augmented Generation (RAG)

- We use regular expressions to extract indicators of compromise (IOC) from logs.
 - e.g., IP addresses, vulnerability identifiers, etc.
- ➤ We use the IOCs to retrieve information about the incident from public threat intelligence APIs, e.g., OTX.
- ▶ We include the retrieved information in the context of the LLM.



Experimental Evaluation

▶ We evaluate our system on 4 public datasets.

Dataset	System	Attacks
CTU-Malware-2014 CIC-IDS-2017 AIT-IDS-V2-2022 CSLE-IDS-2024	Windows xp sp2 servers Windows and Linux servers Linux and Windows servers Linux servers	Various malwares and ransomwares. Denial-of-service, web attacks, SQL injection, etc. Multi-stage attack with reconnaissance, cracking, and escalation. SambaCry, Shellshock, exploit of CVE-2015-1427, etc.

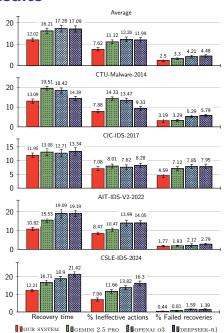
Distribution of MITRE ATT&CK tactics in the evaluation datasets.

Baselines

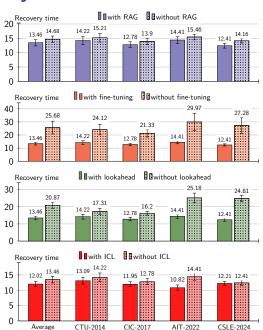
- ▶ We compare our system against frontier LLMs.
- ► Compared to the frontier models, our system is lightweight.

System	Number of parameters	Context window size
OUR SYSTEM	14 billion	128,000
DEEPSEEK-R1	671 billion	128,000
GEMINI 2.5 Pro	unknown (≥ 100 billion)	1 million
OPENAI O3	unknown (≥ 100 billion)	200,000

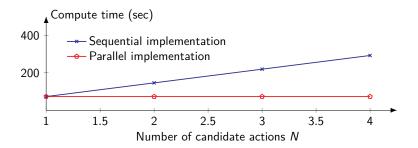
Evaluation Results



Ablation Study



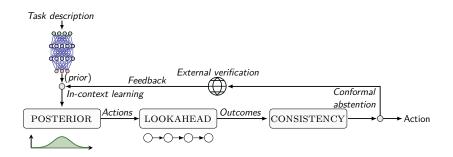
Scalability



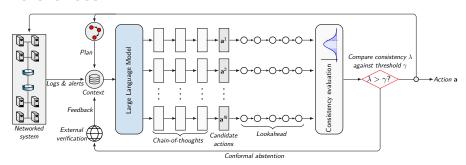
- ► The lookahead optimization is computationally intensive since it requires making multiple inferences with the LLM.
- ▶ The computation can be parallelized across multiple GPU.

Conclusion

- Foundation models will play a key role in cybersecurity.
 - Effective at tackling the scalability challenge.
 - Remarkable knowledge management capabilities.
- We present a framework for security planning.
 - Allows to control the hallucination probability.
 - Significantly outperforms frontier LLMs.



References



- Video demonstration:
 - https://www.youtube.com/watch?v=SCxq2ye-R4Y
- ► Code:
 - https://github.com/Kim-Hammar/llm_incident_ response_ndss26
- Dataset and model weights:
 - https://huggingface.co/datasets/kimhammar/ CSLE-IncidentResponse-V1
 - https:
 - //huggingface.co/kimhammar/LLMIncidentResponse